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Succinct Data Structures for Families of Interval Graphs

Hüseyin Acan1, Sankardeep Chakraborty2, Seungbum Jo3, and Srinivasa Rao Satti4

1Drexel University, USA
2RIKEN Center for Advanced Intelligence Project, Japan

3University of Siegen, Germany
4Seoul National University, South Korea

Abstract

We consider the problem of designing succinct data structures for interval graphs with n
vertices while supporting degree, adjacency, neighborhood and shortest path queries in optimal
time. Towards showing succinctness, we first show that at least n log n − 2n log log n − O(n)
bits1. are necessary to represent any unlabeled interval graph G with n vertices, answering an
open problem of Yang and Pippenger [Proc. Amer. Math. Soc. 2017]. This is augmented by a
data structure of size n log n+O(n) bits while supporting not only the above queries optimally
but also capable of executing various combinatorial algorithms (like proper coloring, maximum
independent set etc.) on interval graphs efficiently. Finally, we extend our ideas to other variants
of interval graphs, for example, proper/unit, k-improper interval graphs, and circular-arc graphs,
and design succinct data structures for these graph classes as well along with supporting queries
on them efficiently.

1 Introduction

A simple undirected graph G is called an interval graph if its vertices can be assigned to intervals
on the real line so that two vertices are adjacent in G if and only if their assigned intervals intersect.
The set of intervals assigned to the vertices of G is called a realization of G. These graphs were
first introduced by Hajós [5] who also asked for the characterization of them. The same problem
was also asked, independently, by Benser [2] while studying the structure of genes. Interval graphs
naturally appear in a variety of contexts, for example, operations research and scheduling theory,
biology especially in physical mapping of DNA, temporal reasoning and many more. We refer the
reader to [4] for a thorough treatment of interval graphs and its applications. Eventually answering
the question of Hajós [5], several researchers came up with different characterizations of interval
graphs, including linear time algorithms for recognizing them; see, for example, [4, Chapter 8] for
characterizations, and linear time algorithms. Moreover, exploiting the special structure of interval
graphs, many otherwise NP-hard problems in general graphs are also shown to have polynomial time
algorithms for interval graphs [4]. These include computing maximum independent set, reporting a
proper coloring, returning a maximum clique etc. In spite of having many applications in practically
motivated problems, we are not aware of, to the best of our knowledge, any study of interval graphs
from the point of view of succinct data structures where the goal is to store a set Z of objects using
the information theoretic minimum log(|Z|) + o(log(|Z|)) bits of space while still being able to
support the relevant set of queries efficiently, and which is what we focus on in this paper. We also
assume the usual model of computation, namely a Θ(log n)-bit word RAM model where n is the
size of the input.

1throughout the paper, we use log to denote the logarithm to the base 2
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1.1 Our main Results

Given an unlabeled interval graph G with n vertices, in Section 2 we first show that at least
n log n − 2n log logn − O(n) bits are necessary to represent G, answering an open problem of
Yang and Pippenger [7]. More specifically, Yang and Pippenger [7] showed a lower bound of
(n log n)/3 + O(n)-bit for representing any unlabeled interval graph and asked whether this lower
bound can be further improved. Augmenting this lower bound, in Section 3 we also propose a
succinct representation of G using n log n+O(n) bits while still being able to support the relevant
queries optimally, where the queries are defined as follows. For any two vertices u, v ∈ G,

• degree(v): returns the number of vertices that are adjacent to v in G,

• adjacent(u, v): returns true if u and v are adjacent in G, and false otherwise,

• neighborhood(v): returns all the vertices that are adjacent to v in G, and

• spath(u, v): returns the shortest path between u and v in G.

We show that all these queries can be supported optimally using our succinct data structure
for interval graphs. More precisely, for any two vertices v, u ∈ G, we can answer degree(v) and
adjacent(u, v) queries in O(1) time, neighborhood(v) queries in O(degree(v)) time, and spath(u, v)
queries in O(|spath(u, v)|) time. Furthermore, we also show how one can implement various fun-
damental graph algorithms in interval graphs, for example depth-first search (DFS), breadth-first
search (BFS), computing maximum independent set, determining a maximum clique etc, both time
and space efficiently using our succinct representation for interval graphs. We also extend our
ideas to other variants of interval graphs, for example, proper/unit interval graphs, k-proper and
k-improper interval graphs, and circular-arc graphs, and design succinct data structures for these
graph classes as well along with supporting queries on them efficiently.

2 Counting the number of unlabeled interval graphs

This section deals with counting unlabeled interval graphs on n vertices, and let In denote this
quantity. Initial values of this quantity are given by Hanlon [6] but he did not prove an asymp-
totic form for enumerating the sequence. Answering a question posed by Hanlon [6], Yang and
Pippenger [7] proved that the generating function I(x) =

∑
n≥1 Inxn diverges for any x 6= 0 and

they established the bounds

n log n

3
+O(n) ≤ log In ≤ n log n+O(n). (1)

The upper bound in (1) follows from In ≤ (2n − 1)!! =
∏n

j=1(2j − 1), where the right hand
side is the number of matchings on 2n points on a line. For the lower bound, the authors showed
I3k ≥ k!/33k by finding an injection from Sk, the set of permutations of length k, to three-colored
interval graphs of size 3k. Furthermore, they left it open whether the leading terms of the lower
and upper bounds in (1) can be matched, which is what show in affirmative by improving the lower
bound. In other words, we find the asymptotic value of log In. In what follows, for a set S, we
denote by

(
S
k

)
the set of k-subsets of S.

Theorem 1. Let In be the number of unlabeled interval graphs with n vertices. As n → ∞, we
have

log In ≥ n log n− 2n log log n−O(n). (2)
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Proof. We consider certain interval graphs on n vertices with colored vertices. Let k be a positive
integer smaller than n/2 and ε a positive constant smaller than 1/2. For 1 ≤ j ≤ k, let Bj and
Rj denote the intervals [−j − ε,−j + ε] and [j − ε, j + ε], respectively. These 2k pairwise-disjoint
intervals will make up 2k vertices in the graphs we consider. Now let W denote the set of k2 closed
intervals with one endpoint in {−k, . . . ,−1} and the other in {1, . . . , k}. We color B1, . . . , Bk with
blue, R1, . . . , Rk with red, and the k2 intervals in W with white.

Together with S := {B1, . . . , Bk, R1, . . . , Rk}, each {J1, . . . , Jn−2k} ∈
( W
n−2k

)
gives an n-vertex,

three-colored interval graph. For a given J = {J1, . . . , Jn−2k}, let GJ denote the colored interval
graph whose vertices correspond to n intervals in S ∪ J , and let G denote the set of all GJ .

Now let G ∈ G. For a white vertex w ∈ G, the pair (dB(w), dR(w)), which represents the
numbers of blue and red neighbors of w, uniquely determine the interval corresponding to w; this
is the interval [−dB(w), dR(w)]. In other words, J can be recovered from GJ uniquely. Thus

|G| =
(

k2

n−2k
)
. Since there are at most 3n ways to color the vertices of an interval graph with blue,

red, and white, we have

In · 3n ≥ |G| =
(

k2

n− 2k

)
≥
(

k2

n− 2k

)n−2k
≥
(
k2

n

)n−2k

for any k < n/2. Setting k = bn/ log nc and taking the logarithms, we get

log In ≥ (n− 2k) log(k2/n)−O(n) = n log n− 2n log logn−O(n).

3 Succinct representation of interval graphs

In this section, we introduce a succinct n log n+(2+ε)n+o(n)-bit representation of unlabeled interval
graph G on n vertices with constant ε > 0, and show that the navigational queries (degree, adjacent,
neighborhood, and spath queries) and some basic graph algorithms (BFS, DFS, PEO traversals,
proper coloring, computing the size of maximum clique and maximum independent set etc.) on G
can be answered/executed efficiently using our representation of G.

3.1 Succinct Representation of G

We first label the vertices of G using the integers from 1 to n, as described in the following. It’s a
well-known result that the vertices in G can be represented by n intervals I = {I1 = [l1, r1], I2 =
[l2, r2], . . . , In = [ln, rn]} where all the endpoints in I are distinct integers in the range [1, 2n]. Since
there are 2n distinct endpoints for the n intervals in I, every integer in [1, 2n] corresponds to a
unique li or ri for some 1 ≤ i ≤ n. We assign the labels to the vertices in G based on the sorted
order of left endpoints of their corresponding intervals, i.e., for any two vertices a, b ∈ G, a < b
if and only if la < lb. Now we describe the representation of G. Let S = s1 . . . s2n be the binary
sequence of length 2n such that for 1 ≤ i ≤ 2n, si = 0 if i ∈ {l1, l2, . . . , ln} (i.e., if i corresponds
to the left end point of an interval in I), and si = 1 otherwise. If i = lk or i = rk, we say that si
corresponds to the interval Ik. We represent the sequence S using 2n + o(n) bits to support rank
and select queries on S in O(1) time [3]. Next, we store the sequence r = r1 . . . rn, and for some
fixed constant ε > 0, we also store an εn-bit data structure to support RMax and RMin queries on
r in O(1) time. Using the representations of S and r, it is easy to show that for any vertex v ∈ G,
we can return its corresponding interval Iv = [lv, rv] in O(1) time by computing lv = select0(S, v),
and rv can be accessed from the sequence r. Thus, the total space usage of our representation is
n log n+ (3 + ε)n+ o(n) bits. See Figure 1 for an example.
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S = 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1
r = 6 5 9 8 12 18 15 17 16

2

81

2 3

4

5

6

7

9

1 3 4 65 7 8 109 11 12 1413 15 16 17 18

I1 = [1,6]
I2 = [2,5]

I4 = [4,8]
I3 = [3,9]

I5 = [7,12] I9 = [14,16]
I6 = [10,18]

I7 = [11,15]
I8 = [13,17]

Figure 1: Example of an input interval graph and its representation.

3.2 Supporting Navigational Queries

In this section, we show that degree, adjacent, neighborhood, and spath queries on G can be answered
in asymptotically optimal time using the representation described in the Section 3.1.
degree(v)(v)(v) query: We count the number of vertices in G which are not adjacent to v, which is a
disjoint union of the two sets: (i) the set of intervals that end before the starting point lv, and (ii)
the set of intervals that start after the end point rv. Using our representation the cardinalities of
these two sets can be computed as follows. The number of intervals u with ru < lv is given by
rank1(S, lv). Similarly, the number of intervals u with rv < lu is given by n−rank0(S, rv). Therefore,
we can answer degree(v) query in O(1) time by returning n − rank1(S, lv) − (n − rank0(S, rv)) =
rank0(S, rv)− rank1(S, lv).
adjacent(u, v)(u, v)(u, v) query: Since we can compute the intervals Iu and Iv in O(1) time, adjacent(u, v)(u, v)(u, v)
query can be answered in O(1) by checking ru < lv or rv < lu (u and v are not adjacent if and only
if one of these conditions is satisfied).

Due to lack of space, we omit here the rest of the proofs of all the other results that we mention
in Section 1.1, and these can be found in the full version of this paper [1].
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An enhanced lower bound for the Time-Dependent Traveling

Salesman Problem

Tommaso Adamo∗1, Gianpaolo Ghiani1, and Emanuela Guerriero1

1Dipartimento di Ingegneria dell’Innovazione - Università del Salento, Lecce, Italy

Abstract

Given a graph whose arc traversal times vary over time, the Time-Dependent Travelling
Salesman Problem amounts to find a Hamiltonian tour of least total duration. In this paper
we define a new lower bounding scheme whose parameters are determined by fitting the traffic
data. Computational results show that, when embedded into a branch-and-bound procedure,
this lower bounding mechanism allows to solve to optimality a larger number of instances than
state-of-the-art algorithms.

1 Introduction

Vehicle routing is concerned with the design of routes for fleets of vehicles, in order to optimize a
given objective (such as minimizing the travelled time), possibly subject to side constraints, such as
vehicle capacity limitations or delivery time windows. In recent years there has been a flourishing
of scholarly work in time-dependent routing. See Gendreau et al. [1] for a review of the field.
Given a graph G = (V ∪ {0}, A) (V is the set of vertices, A is the set of arcs and 0 is the vertex
representing the depot) whose arc traversal times vary over time, the Time-Dependent Travelling
Salesman Problem (TDTSP) amounts to find a Hamiltonian tour of least total duration. In this
work we define a new lower bounding scheme whose parameters are determined by fitting the traffic
data.

2 Problem definition and background

Let [0, T ] be the time horizon partitioned into H subintervals [Th, Th+1] (h = 0, . . . ,H − 1), where
T0 = 0 and TH = T . The travel time τij(t) functions are continuous piecewise linear with break-
points Th (h = 0, . . . ,H), and satisfy the first-in-first-out (FIFO) property (Gendreau et al. [1]).
Ghiani and Guerriero [2] proved that this class of travel time functions can be generated from the
model defined by Ichoua et al. [3] (IGP model) in which the velocity of a vehicle is not constant
over the entire arc, but varies when the boundary between two consecutive time periods is crossed.
Under these hypotheses, the IGP speeds are nonnegative (Ghiani and Guerriero [2]) and can be
decomposed according to the following speed factorization [4]:

vijh = u0ijb
0
hδ

0
ijh, (i, j) ∈ A, h = 0, . . . ,H − 1 (1)

∗Corresponding author: tommaso.adamo@unisalento.it
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where u0ij is the maximum speed of arc (i, j) ∈ A over [0, T ], i.e. u0ij = max
h=0,...,H−1

vijh; b0h ∈ [0, 1] is

the lightest congestion factor during interval [Th, Th+1] on the entire graph, i.e. b0h = max
(i,j)∈A

vijh/u
0
ij ;

and δ0ijh = vijh/u
0
ijb

0
h ∈ [0, 1] is the degradation of the congestion factor of arc (i, j) in interval

[Th, Th+1] w.r.t. the less congested arc in [Th, Th+1].

Definition 1. ∆0 = min
(i,j)∈A

h=0,...,H−1

δ0ijh is the worst degradation of the congestion factor of any arc

(i, j) ∈ A over the entire planning horizon.

∆0 plays a fundamental role: indeed, when ∆0 = 1, then all arcs (i, j) ∈ A have the same
congestion factor b0h during interval [Th, Th+1] (h = 0, . . . ,H − 1).
Cordeau et al. [4] derived a first relaxation of the problem by removing δijh for each arc (i, j) and
each time period h = 0, . . . ,H − 1. This amounts to solve a TDTSP w.r.t. speeds

v0ijh = b0hu
0
ij , (i, j) ∈ A, h = 0, . . . ,H − 1. (2)

A second relaxation can be obtained by giving each arc its maximum speed over the time horizon.
This amounts to solve an Asymmetric TSP [5] w.r.t. (constant) speeds

v0
ijh

= uij , (i, j) ∈ A, h = 0, . . . ,H − 1. (3)

We denote with z(c, t), z(c, t), z(c, t) the duration of a circuit c assuming that the vehicle leaves
the depot at time t and speed laws (1), (2) or (3) hold, respectively.

2.1 An enhanced lower bound

We preliminary observe that the speed factorization (1) for arc (i, j) ∈ A still holds if parameters
bh and δijh (h = 0, . . . ,H − 1) are computed on the basis of a maximum speed uij greater than u0ij :

i. e. uij ≥ u0ij (i, j) ∈ A, h = 0, . . . ,H − 1.
This is equivalent to add an additional time slot h = H (in which the vehicle has already

returned to the depot) with speed uij = vijH ≥ vijh (h = 0, . . . ,H − 1). Let u be the vector of uij
associated to arcs (i, j) ∈ A. Then, the travel speeds can be expressed as

vijh = uijbh(u)δijh(u), (4)

where:

• bh(u) ∈ [0, 1] is the best congestion factor during interval [Th, Th+1] w.r.t. u, i.e.,

bh(u) = max
(i,j)∈A

vijh
uij

;

• δijh(u) =
vijh

bh(u)uij
belongs to [0, 1] and represents the degradation of the congestion factor

of arc (i, j) in interval [Th, Th+1] w.r.t. the least congested arc in [Th, Th+1].

With each vector u are associated a lower bound LB(u) and an upper bound UB(u). In particular,
let c(u) be the optimal solution value of an Asymmetric TSP whereas arc (i, j) has a cost Lij/uij .
The upper bound is simply UB(u) = z(c(u)) while the lower bound LB(u) is:

LB(u) = φ(z(c(u)), 0,b(u)) (5)

6



where, b is the vector of traffic factors bh (h = 0, . . . ,H − 1) and φ(l, t,b) is the traversal time of
a dummy arc of length l assuming it is traversed starting at instant t with speeds b. It is worth
noting that, by increasing the uij variables, z(c(u)) decreases (or remains the same). At the same
time, the traffic factors bh decrease (or remain the same). Hence, the φ value increases or remains
unchanged. As a result, LB(u) may increase, decrease or remain unchanged. In order to find the
best (larger) lower bound, the following problem has to be solved:

maxLB(u) (6)

s.t. uij ≥ vijh (i, j) ∈ A, h = 0, . . . ,H − 1

Unfortunately, this problem is nonlinear nonconvex and non-differentiable. So there is little hope
to solve it to optimality with a moderate computational effort. Instead, we aim at finding a good
lower bound as follows. We first determine a u vector by fitting the traffic data (solving a linear
programming model). More specifically, we determine u in such a way the average residual,

δ =
1

H|A|
∑

h=0,...,H−1

∑

(i,j)∈A
δijh, (7)

is as large as possible in the hope to get ∆(u) = 1, or, at least, improve on lower bound LB(u0).
Then, we solve the Asymmetric TSP w.r.t. costs Lij/uij in order to compute the associated LB(u).

3 Computational results

We compare the new procedure with the Arigliano et al. [6] branch-and-bound algorithm. We
utilize the same instance generation scheme described in Cordeau et al. [4] with 72 periods, and
we impose a time limit of 3600 seconds. Two scenarios are generated: a first traffic pattern A in
which a limited traffic zone is located in the center; a second traffic pattern B in which a heaviest
traffic congestion is situated in the center. The results for the second scenario are shown in Table
1 in which 30 instances are generated for each combination of |V | = 15, 20, 25, 30, 35, 40, 45, 50 and
∆ = 0.90, 0.80, 0.70. The headings are as follows:

• OPT : number of instances solved to optimality out of 30;

• UBI/LBF : average ratio of the initial upper bound value UBI on the best lower bound LBF

available at the end of the search;

• GAPI : average initial optimality gap UBI−LBI
LBI

(%);

• GAPF : average final optimality gap UBF−LBF
LBF

(%);

• NODES: average number of nodes;

• TIME: average computing time in seconds.

Except for columns OPT , we report results on two distinct rows: the first row is the average across
instances solved to optimality, and the second row is the average for the remaining instances. For
the sake of conciseness, the first or the second row has been omitted whenever none or all instances
are solved to optimality. For columns from NODES and TIME we report only averages for
instances that are solved to optimality.

Computational results show that, when embedded into a branch-and-bound procedure, this
lower bounding mechanism allows to solve to optimality a larger number of instances than state-
of-the-art algorithms.
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Table 1: Computational results for instances with traffic pattern B
Arigliano et al. [6] branch-and-bound Arigliano et al. [6] branch-and-bound with the enhanced LB

∆ |V | OPT UBI/LBF GAPI GAPF NODES TIME OPT UBI/LBF GAPI GAPF NODES TIME

0.70

15 24
1.014 18.682 0.000 15642 868.76

28
1.011 5.550 0.000 5074 643.15

1.010 23.106 22.315 41860 – 1.000 21.579 9.327 66059 –

20 11
1.007 9.306 0.000 7464 1270.79

14
1.007 4.508 0.000 6362 1348.98

1.012 20.970 17.579 32595 – 1.004 15.856 5.468 51346 –

25 3
1.020 6.000 0.000 1363 1145.96

4
1.016 3.243 0.000 847 526.58

1.005 14.399 11.087 37336 – 1.007 11.152 4.581 35810 –

30 1
1.019 6.303 0.000 6326 3263.82

2
1.003 0.317 0.000 48 14.03

1.002 11.191 8.887 29854 – 1.007 9.454 4.688 41335 –

35 1
1.003 14.075 0.000 576 488.47

2
1.000 0.000 0.000 7 14.18

1.004 9.608 8.074 15242 – 1.008 7.583 5.083 39228 –

40 0
– – – – –

0
– – – – –

1.003 9.902 7.381 26742 – 1.002 7.910 4.856 28032 –

45 0
– – – – –

1
1.003 0.343 0.000 283 380.00

1.001 11.016 8.842 27832 – 1.002 8.806 5.793 15943 –

50 0
– – – – –

2
1.000 0.000 0.000 0 5.16

1.001 12.023 9.469 16771 – 1.002 7.581 5.492 14310 –

0.80

15 27
1.008 11.804 0.000 8590 631.16

30
1.007 4.145 0.000 4172 287.60

1.005 16.003 14.780 51281 – – – – – –

20 17
1.007 6.218 0.000 5656 710.83

19
1.008 3.950 0.000 6232 1033.32

1.004 15.414 14.421 28191 – 1.001 3.836 3.755 55019 –

25 5
1.011 3.975 0.000 3324 1141.50

7
1.007 2.446 0.000 6253 1265.33

1.002 7.940 5.737 27730 – 1.004 5.920 3.212 28420 –

30 3
1.007 3.483 0.000 1853 1587.37

4
1.001 1.264 0.000 867 763.58

1.002 6.756 4.705 22813 – 1.003 4.905 3.202 20060 –

35 1
1.002 9.882 0.000 553 458.66

2
1.000 0.000 0.000 10 13.43

1.003 5.342 4.290 18755 – 1.002 4.517 3.696 21260 –

40 0
– – – – –

0
– – – – –

1.002 5.616 4.131 24105 – 1.002 5.136 3.633 17467

45 0
– – – – –

1
1.003 0.339 0.000 186 187.29

1.001 6.213 4.829 21979 – 1.001 5.740 4.074 14109 –

50 0
– – – – –

2
1.000 0.000 0.000 0 5.59

1.002 6.357 5.047 13732 – 1.001 4.792 3.742 9640 –

0.90

15 30 1.004 5.718 0.000 1913 157.60 30 1.003 1.898 0.000 358 29.58

20 24
1.004 4.318 0.000 2873 411.66

30
1.003 1.904 0.000 3271 351.53

1.003 7.125 6.789 22047 – – – – – –

25 17
1.003 2.311 0.000 8304 1057.77

22
1.002 1.359 0.000 4406 1108.16

1.001 6.214 5.187 18914 – 1.002 2.698 1.857 21989 –

30 14
1.003 2.300 0.000 5105 1657.75

15
1.003 1.345 0.000 3668 1660.69

1.001 3.905 3.191 8551 – 1.001 2.077 1.531 22643 –

35 4
1.004 2.398 0.000 2035 1761.74

9
1.002 0.878 0.000 1608 1440.52

1.001 2.769 2.107 10269 – 1.000 2.091 1.633 15296 –

40 4
1.003 1.747 0.000 1697 2596.14

1
1.000 1.680 0.000 1768 2473.61

1.001 2.843 2.217 12462 – 1.001 2.148 1.565 12088 –

45 1
1.005 2.040 0.000 953 3310.03

2
1.001 0.088 0.000 45 162.17

1.001 3.028 2.435 7727 – 1.001 2.357 1.810 9494 –

50 0
– – – – –

2
1.000 0.000 0.000 0 4.99

1.002 3.069 2.462 6579 – 1.001 2.138 1.706 6766 –

AVG 187 1.007 7.432 0.000 6146 875.70 229 1.005 2.792 0.000 3561 665.36
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Abstract

Given a degree sequence d̄ of length n, the degree realization problem is to decide if d̄ has
a realization. That is a n-vertex graph whose degree sequence is d̄, and if this is the case, to
construct such a realization (cf. [6, 7, 8]).

We consider the following natural generalization of the problem: Let G = (V,E) be a simple
undirected graph on V = {1, 2, . . . , n}. Let f̄ ∈ Nn be a vector of vertex-requirements, and let
w ∈ Nn be a vector of vertex-weights. The weight vector w satisfies the requirement vector f̄ on G
if the constraints

∑
j∈Γ(i) wj = fi are satisfied for all i ∈ V , where Γ(i) denotes the neighborhood

of i. The vertex-weighted realization problem is now as follows: Given a requirements vector
f̄ , find a suitable graph G and a weight vector w that satisfy f̄ on G. In the original degree
realization problem, all vertex weights are equal to one.

1 Vertex-Weighted Realizations

We start by introducing the problem formally. For i, j ∈ N such that i ≤ j, we use the notation
[i, j] = {i, . . . , j}. Let G = (V,E) be a simple (no self-loops and no parallel edges) undirected graph
with n vertices, where V = [1, n]. Let f = (f1, . . . , fn) ∈ Rn

+ be a vector of requirements. Without
loss of generality, we assume that 0 ≤ f1 ≤ f2 ≤ . . . ≤ fn and define

Fn ,
{
f ∈ Rn

+ : 0 ≤ f1 ≤ f2 ≤ · · · ≤ fn
}
.

Let w = (w1, . . . , wn) ∈ Rn
+ be a vector of provided services at the vertices. The available services

at the vertex i, for i ∈ [1, n], denoted ai, are those provided in its (exclusive) neighborhood Γ(i)
(not including i itself), i.e., ai :=

∑
j∈Γ(i) wj .

We say that the provided services vector w satisfies the requirement vector f on the graph G
if for all i ∈ V , the available services equal the requirement exactly, i.e., the weights satisfy the
following n requirement constraints

ai = fi , (RCi)

for i ∈ [1, n]. Given a vector f , we say that a vector w and a graph G = (V,E) realize f if (RCi) is
satisfied for all i. A domain D ⊆ Fn can be realized if for every f ∈ D there exists a pair (G,w)
that realizes f . (We usually define domains by one or more linear constraints involving the n
requirements.)

Bar-Noy, Peleg, and Rawitz [5] presented the following results.

Theorem 1 ([5]). If n is even, then any f ∈ Fn can be realized using a perfect matching.
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If graph G is a perfect matching, i.e., each vertex has degree 1, each requirement can be satisfied
by the service of its exclusive neighbor. This result shifts the focus to odd sequences. For odd n,
the three domains

D0 := {f ∈ Fn : f1 = 0} , D= := {f ∈ Fn : ∃i s.t. fi = fi+1}

and
D∆ := {f ∈ Fn : ∃i < j < k s.t. fk < fi + fj}

can be realized with an approach that utilizes a matching graph. Hence, we can focus on odd
sequences where

0 < f1 < . . . < fn.

As a negative result, they showed that a vector f ∈ Fn does not have a realization if it belongs
to the exponential growth domain

Dexp
n =



f : ∀i ∈ [1, n],

∑

j<i

fj < fi



 .

Theorem 2 ([5]). Let n ≥ 3 be an odd integer. f ∈ Dexp
n cannot be realized.

However, f does have a realization if it is found in the sub-exponential growth domain

Dsub
n =



f : ∃i ∈ [1, n− 1], fi ≤

∑

j<i

fj



 .

Theorem 3 ([5]). Let n ≥ 3 be an odd integer. f ∈ Dsub
n can be realized.

These two theorems are sufficient to fully characterize the case where n = 3. Note that the
Theorem 3 does not give us conditions on fn. Basically, this leaves the following domain as unknown:



f : ∀i ∈ [1, n− 1],

∑

j<i

fj < fi ∧ fn−2 + fn−1 < fn <
n−1∑

j=1

fj





In this unknown domain Bar-Noy, Peleg, and Rawitz, find two constructions that realize parts
of the range. The windmill domain:

D./
n =



f ∈ Fn :

n−1∑

j=2

(fj − f1) ≤ fn ≤
n−1∑

j=1

fj



 ,

and the kite domain:

D.−
n =



f ∈ Fn :

n−1∑

j=3

fj ≤ fn ≤ f1 +
n−1∑

j=3

fj



 .

The constructions are depicted in Figure 1

Theorem 4 ([5]). Let n ≥ 5 be an odd integer. f ∈ D./
n can be realized.
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Figure 1: Realization for the kite domain. The Windmill is given by adding the edge (1, n)

The windmill domain can be extended using a matching to the following domain.

Theorem 5 ([5]). Let n ≥ 5 be an odd integer and let f ∈ Fn. Let k be an odd integer s.t. k ≤ n−4.
If f satisfies

n−1∑

j=k+1

(fj − fk) ≤ fn <
n−1∑

j=k

fj ,

then it can be realized.

Theorem 6 ([5]). Let n ≥ 5 be an odd integer. f ∈ D.−
n can be realized.

Similarly, the kite domain can be extended using a matching to the following domain.

Theorem 7 ([5]). Let n ≥ 5 be an odd integer and let f ∈ Fn. Let k be an odd integer s.t. k ≤ n−4.
If f satisfies

n−1∑

j=k+2

fj ≤ fn < fk +

n−1∑

j=k+2

fj ,

then it can be realized.

This leaves us with an unknown domain for each odd integer k: 1 ≤ k ≤ n− 4, (n− k)fk < fk+1

and

fk +
n−1∑

j=k+2

fj < fn <
n−1∑

j=k+1

(fj − fk).

In this work, we show that the gap “between” the windmill and the kite of Theorem 4 & 6, i.e.,
k = 1 cannot be realized.

Theorem 8. Let n ≥ 5 be an odd integer, and a vector f ∈ Fn cannot be realized if

(I)
∑

j<i fj < fi for i ∈ [1, n− 1],

(II) fn + (n− 1)f1 <
∑n−1

i=1 fi < fn + f2.

For the remaining gaps we show that the realizable range can be extended. This is done by using
different permutations for the kite and windmill constructions and augmenting the constructions
appropriately.
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Theorem 9. Let n ≥ 5 be an odd integer and let f ∈ Fn. Let k be an odd integer s.t. 3 ≤ k ≤ n−4.
If f satisfies

n−1∑

j=k+1

(fj − fk) ≤ fn <
n−1∑

j=1

fj − fk+1,

then it can be realized.

This narrows the remaining gaps. On the way to showing that there are more un-realizable
domains, we discovered additional constructions that let us realize more domains. In a way these
constructions generalize the windmill and kite. These domains are not necessarily “connected” to
the other realizable domains and split the unknown gaps into several smaller gaps.

While we make an important step with Theorem 8, a full characterization of the problem is an
open question.

2 Variations and open Problems

Several variations have been considered. A survey is given by Bar-Noy et. al [3]. Instead of the sum
of the neighbor’s weights, maximum and minimum-versions were studied [1, 2]. Moreover, notions
of vertex-happiness have been investigated [4].

In this work exclusive neighborhoods were considered. In the inclusive neighborhood variant
any vertex is part of its own neighborhood. This is an interesting direction for further research.
Another intriguing restriction is to allow the realizing graph to come from a given family of graphs,
e.g., trees, forests, or bipartite graphs.
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Abstract

In this paper, we present an extension of bigraphs validated by a mathematical proof. The
extension aims at enhancing the expressivity of bigraphs through adding labels that carry more
properties of modeled components.

Keywords: Bigraphs, Labels, Bigraph extension.

1 Introduction

Bigraphs [3] are a mathematical and graphical model that represents locality and connectivity
when dealing with mobile distributed systems. To capture the dynamicity of systems, bigraphs are
equipped with transformation rules that enable them to reconfigure themselves Bigraphs [2].

With the diversity of components involved in ubiquitous systems, bigraphs are expected to
describe these systems in a clear and expressive way. Actually, each component can be represented
in the bigraph with a node that has a type called a control. However, these controls are insufficient
to present component properties and characteristics which are very important in modeling such
systems.

To tackle this lack of expressivity, we propose, in this paper, an extension that consists in
enhacing nodes with labels. These labels enable nodes to carry more information (properties) of
the components they represent. To do this, we addressed both abstract bigraphs and concrete
bigraphs (i.e., bigraphs where nodes have identifiers).

2 Extending Abstract Bigraphs

Attaching label to nodes in abstract bigraphs can be done by extending the signature (i.e., the
set of controls). Thus, it carries not only the types of nodes (controls) and their arities (i.e., the
number of ports which enable a node to connect to other nodes), but also an n-tuple of labels.

Definition 1 (Extended Signature). An extended signature is composed of a set of pairs K = K ′×L
and an arity map ar, where K ′is a set of controls, L is a set of n-tuple of labels and ar: K ′×L −→ N
arity map.

Our extension does not alter the bigraph structure in terms of locality neither in terms of
linking. Thus, it is sufficient to demonstrate that the elements of K are disjoint to guarantee that
our extended signature is confirming to the formal definition of R. Milner. Actually, this is obvious
since K = K ′ × L and the elements of K ′ are disjoint.

Nonetheless, extending signature gives bigraphs a limited expressivity since nodes are bound to
share the same control and so the same set of labels (properties). However, in modeling ubiquitous
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systems, components that have the same type, may have different characteristics and properties.
For this reason, we addressed, in our work, concrete bigraphs enabling each node to carry its owns
labels.

3 Extending Concrete Bigraphs

For concrete bigraphs, labels are added through the extension of the definition of a bigraph by
adding a new function lv, which assigns labels to nodes. We propose the following definition.

Definition 2 (Labeled bigraph). A labeled bigraph takes the following form:
G = (V,E, ctrl, lv, prnt, link) : I −→ J with
V: the set of nodes V ⊂ υ, with υ a set of node-identifiers.
E: the set of edges E ⊂ ε, with ε a set of hyperedge-identifiers.
lv : V −→ L, a labeling function where L is the set of n-tuples of alphabetic tags assigned to nodes.
Ctrl: V −→ K, a control map, where the signature K is a set of controls.
prnt: m

⊎
V −→ V

⊎
n is the parent map and it defines the nested place structure.

link: X
⊎
P −→ E

⊎
Y is the link map and it defines the link structure.

I: inner interface I = 〈m,X〉 where m is the number of sites and X is the set of inner names.
J: outer interface J = 〈n, Y 〉 where n is the number of roots and Y is the set of outer names.

In order to validate our definition, we should verify that labeled bigraphs form an s-category
(let call it BGL). In an s-category the composition of arrows has to satisfy three constraints, in
addition to possessing a partial tensor product, unit, and symmetries. To verify this, we go through
each one at a time.
Composition. Composition in BGL should satisfy the following constraints:
(C1) g ◦ f is defined iff cod(f ) = dom(g) and |f| ∩ |g| = ∅.
(C2) h ◦ (g ◦ f) = (h ◦ g) ◦ f when either are defined.
(C3) id ◦ f = f and f = f ◦ id.
Constraint 1 (C1). To prove the validity of the first constraint, we start with proving that if the
composition between two labeled arrows g ◦ f is defined then cod(f ) = dom(g) and |f| ∩ |g| = ∅.

Proof. (⇒)Let f and g two morphisms of an s-category BG. Let f1 and g1 the labeled morphisms
of f and g respectively in BGL.
Based on our definition of a bigraph, lv does not assign labels to the elements of interfaces nor it
changes the support. Therefore, the objects of BG are the objects of BGL. Hence;

if g1 ◦ f1 is defined⇒ g ◦ f is defined⇒ cod(f) = dom(g)

cod(f1) = cod(f)

dom(g1) = dom(g)




⇒ cod(f1) = dom(g1)

In addition, |f | ∩ |g| = ∅. Since, |f1| = |f | and |g1| = |g|, so, |f1| ∩ |g1| = ∅
Hence, we get the desired results ⇒ cod(f1) = dom(g1) and |f1| ∩ |g1| = ∅
(⇐) If cod(f1) = dom(g1) and |f1| ∩ |g1| = ∅ then

cod(f1) = dom(g1)

|f1| ∩ |g1| = ∅

}
⇒
{
cod(f) = dom(g)

|f | ∩ |g| = ∅
⇒ g ◦ f is defined

Adding labels to g and f maintains g ◦ f defined. So, g1 ◦ f1 is also defined.
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Constraint 2 (C2) Following the steps done in the first constraint, we start with the constraint
being valid for arrows and objects from an s-category and then move onto labeled arrows (labeled
bigraphs) to prove that associativity is applicable on composition in BGL.

Proof. Let f1, g1 and h1 morphisms in BGL.
h1 ◦ (g1 ◦ f1) and (h1 ◦ g1) ◦ f1 are defined. So, h ◦ (g ◦ f) and (h ◦ g) ◦ f are also defined where
f : I −→ J , g : J −→ H and h : H −→ K are the non labeled morphisms inBG.

The dom(h ◦ (g ◦ f)) and the cod(h ◦ (g ◦ f)) are objects in BG that are not impacted by the
labeling function. So, h ◦ (g ◦ f) = h1 ◦ (g1 ◦ f1) and (h ◦ g) ◦ f = (h1 ◦ g1) ◦ f1.

Since BG is an s-category, h ◦ (g ◦ f) = (h ◦ g) ◦ f . Hence, h1 ◦ (g1 ◦ f1)=(h1 ◦ g1) ◦ f1.

Constraint 3 (C3) The proof of the third constraint, composition with the identity arrow, is
more-or-less like the first constraint. The only difference is that the interfaces remain intact from
lv therefore the identity arrows id in BG are the same in BGL.

Proof. Let: f : I −→ J an arrow in the s-category BG.
f1 : I −→ J the labeled arrow in BGL.
Given: id ◦ f = f and f = f ◦ id (since f is an arrow in an s-category.)

idJ ◦ f = f

cod(f) = cof(f1)

|f1| = |f |




⇒ idJ ◦ f1 is defined and idJ ◦ f1 = f1

f ◦ idI = f

dom(f) = dom(f1)

|f1| = |f |




⇒ f1 ◦ idI is defined andf1 ◦ idI = f1

Tensor product. A tensor product is the juxtaposition of the roots of two morphisms (bi-
graphs); requiring that their outer names and inner names are respectively disjoint.

Proof. As we mentioned previously, the labeling function lv does not affect the interfaces. Hence,
objects in an s-category BG are the same objects in BGL. Thus, BGL has a tensor product that
satisfies the following:
For f : I0 −→ I1 and g : J0 −→ J1 in BG, the tensor product f ⊗ g is defined iff Ii⊗ Ji is defined
(i=0,1) and |f | ∩ |g| = ∅.

Let: f1 and g1 the labeled versions of f and g in BGL, f1 : I0 −→ I1 and g1 : J0 −→ J1 (since
the object of BG are the same objects of BGL)
(⇒)If f1 ⊗ g1 is defined then:

|f | = |f1|
|g| = |g1|
f1 ⊗ g1is defined




f ⊗ gis defined

{
I0 ⊗ J0andI1 ⊗ J1
|f | ∩ |g| = ∅ ⇒ |f1| ∩ |g1| = ∅
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(⇐)If I0 ⊗ J0andI1 ⊗ J1 are defined and |f | ∩ |g| = ∅ then:

I0 ⊗ J0andI1 ⊗ J1are both defined

|f1| ∩ |g1| = ∅
|f | = |f1|
|g| = |g1|




⇒ |f | ∩ |g| = ∅




f ⊗ gis defined and with l = lf1

⊎
lg1




⇒ f1⊗g1is defined.

Symmetries. Symmetries are arrows with empty support, ensuing permutations on the place
graph structure. Given the established statement that the objects of BGL are the objects of BG,
BGL possesses symmetries.
A symmetry arrow of two objects/interfaces I = 〈m,X〉 and J = 〈n, Y 〉
γI,J : I ⊗ J −→ J ⊗ I, is defined (when both I ⊗ J and J ⊗ I are defined) as follows: γ〈m,X〉,〈n,Y 〉 =
〈γm,n, γX,Y 〉 With:

γm,n = (∅, ∅, prnt), where prnt(i) = n+ i(i ∈ m)
and prnt(m+ j) = j(j ∈ n)

γX,Y = idX
⊎

Y

Unit. A unit is an object ε = 〈0, ∅〉, that satisfies the following equalities which are valid in
BGL since they are valid in BG for having the same objects:
ε ◦ I = I ◦ ε = I
ε⊗ I = I ⊗ ε = I

4 Conclusion

In this paper, we presented our solution for extending bigraphs in order to increase their expressivity
through labels that carry more properties of nodes. This extension was proved valid through two
steps. First, for labeled abstract bigraphs, we proved that our definition of an extended signature
conforms the formal definition given by Milner[3]. Second, for labeled concrete bigraphs, we proved
that concrete bigraphs are casted as an s-category. In future work, we aim at implementing this
extension into BiGMTE1 tool[1].
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Abstract
We consider a bilevel continuous knapsack problem where the leader controls the capacity

of the knapsack and the follower’s profits are uncertain. Adopting the robust optimization
approach and assuming that the follower’s profits belong to a given uncertainty set, our aim
is to compute a worst case optimal solution for the leader. We show that this problem can be
solved in polynomial time for both discrete and interval uncertainty. In the latter case, we make
use of an algorithm by Woeginger [8] for a class of precedence constraint knapsack problems.

1 Introduction
The aim of bilevel optimization is to model situations where certain decisions are taken by a so-
called leader, but then one or more followers optimize their own objective functions subject to the
choices of the leader. The follower’s decisions in turn influence the leader’s objective, or even the
feasibility of her decisions. The objective is to determine an optimal decision from the leader’s
perspective. Even in the case that both the leader and the follower solve linear programs, the
bilevel problem turns out to be strongly NP-hard in general [6]. Several surveys and books on
bilevel optimization have been published, e.g., [3, 5].

Our research is motivated by the question of how much harder does bilevel optimization become,
when adopting the robust optimization approach to address uncertainties. In this approach, the
uncertain parameters are specified by so-called uncertainty sets which contain all possible (or likely)
scenarios; the aim is to find a solution that is feasible in all scenarios and that optimizes the worst
case. The only article we are aware of that addresses robustness in bilevel optimization is [2].

In classical one-level robust optimization, even if uncertainty only occurs in the objective, some
classes of uncertainty sets may lead to substantially harder problems, e.g., finite uncertainty sets
in the context of combinatorial optimization [7]. In other cases, the problems can be solved by
an efficient reduction to the underlying certain problem. This is true in particular for the case of
interval uncertainty, where each coefficient may vary independently within some interval. For an
overview of complexity results in robust combinatorial optimization under objective uncertainty,
we refer the reader to the recent survey [1] and the references therein.

We concentrate on a bilevel continuous knapsack problem where the leader only controls the
capacity. Without uncertainty, this problem is easy to solve; see Section 2. However, with interval
uncertainty on the follower’s objective, the problem becomes more involved. Adapting an algorithm
by Woeginger [8] for some precedence constraint knapsack problem, we show that it can still be
solved in polynomial time; see Section 4. Before, we also discuss why the case of finite uncertainty
sets is tractable as well; see Section 3.

Both results are problem-specific and thus do not answer the question whether an efficient
oracle-based algorithm exists, using an oracle for the certain case. However, we believe that the
additional difficulty of the problem in the interval case makes the existence of such an algorithm
unlikely.
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2 Underlying certain problem
We first discuss the deterministic variant of the bilevel optimization problem under consideration;
see also [5] for more details. The overall (certain) problem can be formulated as follows:

min d>x

s. t. b− ≤ b ≤ b+

x ∈ argmax c>x

s. t. a>x ≤ b
0 ≤ x ≤ 1

(P)

The leader’s variable is b ∈ R and the follower’s variables are x ∈ Rn. The vectors a, c ∈ Rn≥0 and
d ∈ Rn and the bounds b−, b+ ∈ R are given. We may assume 0 ≤ b− ≤ b+ ≤ ∑n

i=1 ai, a > 0 and
c > 0. To simplify presentation, we always assume the follower’s optimum solution to be unique.

The follower solves a continuous knapsack problem which can be done, for example, using
Dantzig’s algorithm [4]: by first sorting the items, we may assume c1

a1
≥ · · · ≥ cn

an
. The idea is then

to pack the items into the knapsack in this order until it is full; only a fraction of the so-called
critical item being taken. Note that, due to the assumptions 0 ≤ b ≤ ∑n

i=1 ai and c > 0, every
optimum solution of the follower’s problem satisfies a>x = b.

Now, as only the critical item, but not the sorting depends on b, the leader can just compute
the described order of items, and her problem can be reformulated as minimizing the function

f(b) :=





0 for b = 0
j−1∑

i=1
di + dj

aj

(
b−

j−1∑

i=1
ai
)

for b ∈
( j−1∑

i=1
ai,

j∑

i=1
ai
]
, j ∈ {1, . . . , n}

over b ∈ [b−, b+]. As f is piecewise linear, it suffices to evaluate f at the boundary points b− and b+

and at all feasible vertices, i.e., at b = ∑j
i=1 ai for all j ∈ {0, . . . , n} with

∑j
i=1 ai ∈ [b−, b+]. Hence,

Problem (P) can be solved in time O(n logn), which is the time needed for sorting.

3 Finite uncertainty
We now look at the robust version of the problem where the follower’s objective function is uncertain
for the leader, and this uncertainty is given by a finite uncertainty set U containing the possible
objective vectors c. A formulation of this is given by replacing the leader’s objective d>x by
maxc∈U d>x in Problem (P).

The inner maximization problem can be interpreted as being controlled by an adversary, thus
leading to an optimization problem involving three actors: first, the leader takes her decision b,
then the adversary chooses a follower’s objective c that is worst possible for the leader, and finally
the follower optimizes this objective choosing x.

Again, we aim at solving this problem from the leader’s perspective, which can be done as
follows: for every c ∈ U , consider the piecewise linear function fc as described in Section 2. The
task is then to minimize the pointwise maximum f := maxc∈U fc over [b−, b+]. By considering the
number of vertices the piecewise linear function f can have, we get:

Theorem 1. The robust bilevel continuous knapsack problem with finite uncertainty set U can be
solved in O(|U |n logn+ |U |2n) time.
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4 Interval uncertainty
We now consider U = [c−1 , c+

1 ]× · · · × [c−n , c+
n ] and assume 0 < c− ≤ c+. To simplify the notation,

we define p−i := c−i
ai

and p+
i := c+

i
ai
, and assume that all values p−i and p+

i are pairwise different.
For the leader, the exact entries of ci in their intervals [c−i , c+

i ] do not matter, but only the
induced sorting that the follower will use. Given U and a, the possible sortings are exactly the
linear extensions of the partial order P that is induced by the intervals [p−i , p+

i ] in the sense that
we set

i <P j :⇔ p+
i < p−j .

Such a partial order is called an interval order. One could compute all linear extensions of P and
the pointwise maximum over all corresponding piecewise linear functions as in Section 3, but these
could be exponentially many. However, the problem can still be solved in polynomial time.

We will see that the adversary’s problem for fixed b is closely related to the precedence constraint
knapsack problem. This is a 0-1 knapsack problem, where additionally, a partial order on the items
is given and it is only allowed to pack an item into the knapsack if all its predecessors are also
selected. For the special case where the partial order is an interval order, Woeginger described a
pseudopolynomial algorithm, see Lemma 11 in [8]. The algorithm uses the idea that every initial
set (i.e. prefix of a linear extension of the interval order) consists of
• a head, which is the element whose interval has the rightmost left endpoint among the set,
• all predecessors of the head in the interval order, and
• some subset of the elements whose intervals contain the left endpoint of the head in their
interior.

Our algorithm for the adversary’s problem is a variant of this algorithm for the continuous knapsack.
For this, we need the notion of a fractional prefix of a partial order P , which is a triple (J, j, λ)

such that J ⊆ {1, . . . , n}, j ∈ J , 0 < λ ≤ 1, and there is an order of the elements in J , ending with
j, that is a prefix of a linear extension of P . The follower’s solution corresponding to a fractional
prefix F = (J, j, λ) is defined by xFi := 1 for i ∈ J \{j}, xFi := 0 for i ∈ {1, . . . , n}\J , and xFj := λ.
Additionally, there is the empty fractional prefix ∅ with x∅ = 0. Let P be the set of all fractional
prefixes of the interval order P . Then the leader’s problem can be reformulated as follows:

min
b∈[b−,b+]

max
F∈P

a>xF =b

d>xF

We first focus on the inner maximization problem, the adversary’s problem. In the case where
the interval order has no relations, this problem is very similar to the ordinary continuous knapsack
problem and can be solved using Dantzig’s algorithm, as well. This will also be used as a subroutine
on a subset of the elements.

The general adversary’s problem can be solved by Algorithm 1. In the notation of Woeginger’s
algorithm, the k-th element is the head in iteration k, I−k is the set of its predecessors, and I0

k

corresponds to the intervals containing the left endpoint of the head – not necessarily in their
interior, so that, in particular, also k ∈ I0

k . The basic difference to Woeginger’s algorithm is that
due to the fractionality, it is important to have a dedicated last element of the prefix. In our
construction, any element of I0

k could be this last element, in particular it could be k, but it does
not have to.

To solve the leader’s problem, Algorithm 1 can be generalized to work for a range [b−, b+] of
capacities instead of a fixed b by using the variant of Dantzig’s algorithm which returns a piecewise
linear function, as described in Section 2. Then the iterations give piecewise linear functions
depending on b. Finally, the minimum of their pointwise maximum, over [b−, b+], is computed.
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Algorithm 1: Algorithm for the adversary’s problem
Input : a ∈ Rn>0, 0 ≤ b ≤∑n

i=1 ai, d ∈ Rn, 0 < p− < p+

Output: F ∈ P with a>xF = b maximizing d>xF
1 if b = 0 then
2 return ∅
3 K := ∅
4 for k = 1, . . . , n do
5 I−k := {i ∈ {1, . . . , n} : p+

i < p−k }
6 I+

k := {i ∈ {1, . . . , n} : p−i > p−k }
7 I0

k := {1, . . . , n} \ (I−k ∪ I+
k )

8 if 0 < b−∑i∈I−
k
ai ≤

∑
i∈I0

k
ai then

9 (J ′k, jk, λk) := Dantzig(I0
k , dI0

k
, aI0

k
, b−∑i∈I−

k
ai)

10 Jk := J ′k ∪ I−k
11 K := K ∪ {k}

12 return (Jk, jk, λk) with k = argmax{d>x(Jk,jk,λk) : k ∈ K}

Analyzing the time complexity of the piecewise linear function computations needed gives:

Theorem 2. The robust bilevel continuous knapsack problem with interval uncertainty can be solved
in O(n3) time.
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A single machine on-time-in-full scheduling problem ∗
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A relevant feature in many production contexts is flexibility. This becomes a key issue, for
instance, in the case of third-party cosmetics manufacturing [1]. There, the core business is the
production of high quality, fully custom orders in limited batches. Competition is pushing compa-
nies to aggressive commercial policies, involving tight delivery dates. At the same time, the custom
nature of the orders makes it impossible to keep materials in stock; lead times are always uncertain,
often making release dates tight as well, and ultimately yielding unexpected peaks of production
loads.

At a scheduling stage, such an on-time-in-full (never split a job, always satisfy the customer
within its delivery date with a single batch) company policy produces problems which are not
only hard to solve by human experts, but often infeasible. As a consequence, delivery dates are
sistematically violated, thereby lowering the perceived quality of service and triggering a loop of
more aggressive commercial policies.

We consider a minimal relaxation of such a policy: in case scheduling all batches is infeasible,
we leave the option of splitting some of them in two fragments (at a price), postponing the delivery
date of the second fragment.

In this paper we focus on the combinatorial investigation of the fundamental case in which
a single machine is available, with the target of using our findings in a column generation based
algorithm for the general multi-machine multi-time-slot case. We formalize our main modeling
assumptions, observe a few fundamental properties, and introduce an exact dynamic programming
algorithm.

1 Models and assumptions

Formally, let J be a set of jobs (modeling customer batches). For each j ∈ J , let a release date rj
and a due date dj be given. Let πj = pj + qj be the processing time of job j; when j is fragmented,
we assume the processing time pj (resp. qj) of the first fragment (resp. second fragment) to be
given.

In our setting, it is realistic to assume that scheduling is performed in fixed time slots (e.g.
weekly), such that no job is left pending at the end of each slot (e.g. over the weekend). Let P be
the total processing capacity of a particular machine in a particular time slot. From an application
point of view, we expect a vast majority of the jobs to have dj − rj > P . However, we assume
πj ≤ P .

Furthermore, let σ be the starting time of the optimization time slot. We preprocess release
and due dates as rj = max{rj − σ, 0} and dj = min{dj − σ, P}.

∗Partially funded by Regione Lombardia, grant agreement n. E97F17000000009, Project AD-COM
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Finally, we assume that no job preemption is possible, as it would imply additional setup time
and storage costs.

Indeed, at a single machine stage, two conflicting objectives need to be considered: on one side,
to perform as few splits as possible, as we expect good multi-machine multi-time-slot solutions
to include few splits overall; on the other side, to schedule as many jobs as possible (potentially
splitting them).

Our single machine on-time-in-full with fixed fragmentation scheduling problem (1-OTIFF) can
be modeled as a bi-objective optimization problem as follows:

max
∑

j∈J
xj ,max

∑

j∈J
zj (1)

s.t. xj ≤ zj ∀j ∈ J (2)

zi + zj ≤ yij + yji + 1 ∀i, j ∈ J : i 6= j (3)

sj + pjzj + qjxj ≤ ej ∀j ∈ J (4)

ei ≤ sj +M(1− yij) ∀i, j ∈ J, (5)

xj , zj , yij ∈ {0, 1} ∀i, j ∈ J (6)

rj ≤ sj , ej ≤ dj ∀j ∈ J (7)

where variables xj take value 1 if job j is performed in full, 0 otherwise, zj take value 1 if job j
is scheduled (either in full or after splitting), 0 otherwise, yij take value 1 if jobs i and j are both
scheduled and i preceeds j, 0 otherwise, sj (resp. ej) take the starting time (resp. ending time) of
job j (or are not influent if job j is not scheduled). Objective functions (1) maximize the number
of scheduled jobs, and that of jobs which are scheduled in full. Constraints (2) ensure consistency
between split and full job selection. Constraints (3) ensure consistency between zj and yij values.
Constraints (4) force consistency between job starting and ending time, when the job is selected.
Constraints (5) are non-overlapping conditions. Constraints (6) and (7) define variable domains.

2 Properties and algorithms

It is not hard to prove the following:

Proposition 1. When all due dates are identical, there always exists an optimal solution in which
jobs are processed in order of non-decreasing release date

and symmetrically

Proposition 2. When all release dates are identical, there always exists an optimal solution in
which jobs are processed in order of non-decreasing due date.

Therefore, we partition the set of jobs J : those whose release date is the starting of the schedul-
ing time slot (R), those not belonging to R whose due date is the ending of the scheduling time
slot (D), and the remaining ones (S). We sort jobs by considering elements of R first, elements of
D second and elements of S as last ones. We also fix an arbitrary order between elements in each
subset, thereby fixing a total order between the jobs. We indicate j > i (resp. j < i) whenever job
j appears after (resp. before) job i in such a total ordering.

We remark that, as discussed in the modeling section, we expect S to be very small, being
composed only by those jobs having both release and due date within the scheduling time slot.
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Figure 1: Layers grid structure (left): coordinates in the grid represent (m,n) values. Inter-layer
arcs (right): blue arcs refer to a vertex i in either R or D, connected only to vertices j > i; red
arcs refer to a vertex in S, connected to all vertices.

Second, we observe that finding suitable upper bounds on the maximum number f (resp. s) of
jobs that are served in full (resp. partially), can be performed by simply solving a single-machine
traditional scheduling problem, or even approximated by solving binary knapsack problems.

Then, we build a directed graph G having one layer for each m = 0 . . . f , for each n = 0 . . . s.
Each layer (m,n) contains one vertex for each job; informally, we indicate a vertex to be in R (resp.
D and S) if it is encoding a job in R (resp. D and S); therefore, each job is encoded by f ·s vertices
in G, one for each layer. Similarly, given two vertices i and j we indicate either i < j or i > j
according to the relative position of the corresponding jobs in their total ordering. Each vertex i
in S is connected to all vertices in both layer (m+ 1,n) and layer (m,n+ 1). Each vertex i in either
R or D is instead connected only to vertices j having j > i in both layers (m+ 1,n) and (m,n+ 1).
Formally, we replace layer (0, 0) with a single dummy vertex 0.

The layers form a grid (Figure 1, left), arcs connect only adjecent layers (Figure 1, right).
1-OTIFF solutions are represented by paths, starting from 0, in such a graph. For finding

optimal ones we design a dynamic programming algorithm, working as follows. At each vertex of
G we consider labels encoding partial solutions, having the form (i, Q, t): t is the overall processing
time spent so far, i is the last visited vertex belonging to R∪D, Q is the set of jobs in S for which
a corresponding vertex has already been visited in the partial solution. We initialize a single label
of value (0, ∅, 0) in the dummy vertex 0. Then we proceed in phases. At each phase l, we proceed
by layers, considering in turn for each v = 0 . . . l the layer (l − v, v). For each layer we proceed by
vertex: we perform extension operations, pushing its labels to neighbour vertices.

In particular, when extending a label (i, Q, t) in layer (m,n) from a vertex k to a vertex j

• if j 6∈ S, a new label (j,Q, t+ πj) is created in layer (m+ 1, n) and a new label (j,Q, t+ pj)
is created in layer (m,n+ 1)

• if j ∈ S, a new label (i, Q ∪ {j}, t + πj) is created in layer (m + 1, n) and a new label
(i, Q ∪ {j}, t+ pj) is created in layer (m,n+ 1)

We avoid extensions whenever j ∈ Q, in order to avoid including twice the same job in the
partial solution, or t > P in the new label, to avoid exceeding the available time slot. Furthermore
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we run dominance checks: taken two labels λ′ = (i′, Q′, t′) and λ′′ = (i′′, Q′′, t′′) belonging to the
same vertex, we prune λ′′ whenever i′ ≤ i′′, Q′ ⊆ Q′′ and t′ ≤ t′′, and at least one of these conditions
is strict.

The algorithm terminates when no new label is created during a particular phase.
We can prove that

Proposition 3. after termination, all Pareto-optimal solutions are encoded by labels

and in particular, by labels in the top-right outermost border of non empty layers.
We discuss efficient implementations of our algorithm, and adaptations of speedup techniques

from the literature.
Potentially, our algorithm has a high degree of computing parallelism, we therefore focus on

effective techniques to enable concurrency.
As a perspective of future research, we remark that our algorithm naturally extends to the case

in which prizes are assigned to the selection of jobs, in both full and split options. We expect such
an extension to produce effective multiple pricing routines in a column generation setting for the
multi-machine multi-time-slot version of the problem.
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Abstract

We present a bilevel programming formulation for the aircraft deconfliction problem with
multiple lower-level subproblems. We propose two reformulation based on the KKT conditions
and the dual of the lower-level subproblems. Finally, we compare the results obtained imple-
menting these formulations using global optimization solvers.

1 Introduction

We consider the problem of aircraft deconfliction, or, in other words, detection and resolution of
aircraft conflicts, which is one of the main tasks of Air Traffic Management. Aircraft are said to be
potentially in conflict if their relative distance is smaller than a given safety threshold. Despite the
importance of this kind of control, it is still widely performed manually on the ground by air traffic
controllers, who essentially monitor the air traffic of a certain period of time on a radar screen,
giving instructions to the pilots. Since the level of automation reached on aircraft is very high, the
need for automatic tools to integrate human work on the ground is evident.
There are several ways in which aircraft conflicts can be avoided. The most common is based
on the change of the trajectory or the flight level of the involved aircraft. This is the way air
traffic controllers usually solve potential conflicts. Another strategy consists in slightly changing
the speeds while keeping the trajectories unchanged. The latter is the variant on which we will focus
in this paper. We present a Mathematical Programming (MP) formulation for aircraft separation
based on speed regulation. For a wider introduction to this problem, see [1].
We will assume that aircraft fly within a fixed altitude layer: they can thus be modeled as points
in R2 (see Figure 1 as an example).

A1

A2

k = 1

k = 2

Figure 1: Two conflicting aircraft

Deconfliction is expected to involve minimal deviations from the original aircraft flight plan. There-
fore, the objective function to minimize will take into account the percentage of speed change of
each aircraft. Of course, for each aircraft pair, we must assure that they do not get closer to each
other than a given safety distance at every time t of a fixed interval [0, T ] (note that this generates
an uncountably infinite set of constraints).
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2 Mathematical Formulations

We propose a MP formulation of the speed-change problem variant. The terminology and symbols
are taken from [1].

1. Sets:
• A = {1, .., n} is the set of aircraft (n aircraft move in the shared airspace)
• K = {1, 2} is the set of directions (the aircraft move in a Euclidean plane)

2. Parameters:
• T is the length of the time horizon taken into account [hours]
• d is the minimum required safety distance between a pair of aircraft [NauticalMile NM]
• x0ik is the k-th component of the initial position of aircraft i
• vi is the initial speed of aircraft i [NM/h]
• uik is the k-th component of the direction of aircraft i
• qmin

i and qmax
i are the bounds on the ratio of the speed for each aircraft

3. Variables:
• qi is the is the possible increase or decrease of the original speed of aircraft i: = 1 if the

speed is unchanged, qi > 1 if it is increased, qi < 1 if it is decreased
• tij is the instant of time defined for the aircraft pair i and j; these variables help us

compute the relative distance between i and j in time interval [0, T ]

2.1 Bilevel formulation of the problem

In order to address the issue of uncountably many constraints for each value in [0, T ], we propose
to formulate the problem as a bilevel MP with multiple second level problems. Each of these
subproblems ensures that the minimum distance between each aircraft pair exceeds the safety
distance threshold. Thus, each lower-level subproblem involves the lower-level variable t, and is
parameterized by the upper-level variables q.

min
q,t

∑

i∈A
(qi − 1)2 (1)

∀i ∈ A qmin
i ≤ qi ≤ qmax

i (2)

∀i < j ∈ A d2 ≤ min
tij∈[0,T ]

∑

k∈{1,2}
((x0ik − x0jk) + tij(qiviuik − qjvjujk))2 (3)

The upper-level (convex) objective function is the sum of squared aircraft speed changes. This
corresponds to finding the feasible solution with the minimum speed change, as mentioned before.
It must be minimized w.r.t the time t and the variable q, with each qi within the given range
[qmin
i , qmax

i ]. The objective of each lower-level subproblem is to minimize over tij ∈ [0, T ] the
relative Euclidean distance between the two aircraft it describes; note that this is also a convex
function. This minimum distance, reached at t∗ij , must be at least d2. This corresponds to imposing
the minimum safety distance d between aircraft i and j within [0, T ].

2.2 KKT reformulation

We follow standard practice and replace each convex lower-level subproblem by its Karush-Kuhn-
Tucker (KKT) conditions. Assuming some regularity condition (e.g. the Slater’s condition) holds,
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this yields a single-level MP with complementarity constraints. Given the KKT multipliers µij and
λij defined for each lower-level problem, we have:

min
q,t

∑

i∈A
(qi − 1)2 (4)

s.t. ∀i ∈ A qmin
i ≤ qi ≤ qmax

i (5)

∀i < j ∈ A
∑

k∈{1,2}
(2tij(qiviuik − qjvjujk)2+

+ 2(x0ik − x0jk)(qiviuik − qjvjujk)− µij + λij) = 0 (6)

∀i < j ∈ A µij , λij ≥ 0 (7)

∀i < j ∈ A µij tij = 0 (8)

∀i < j ∈ A λij tij − λij T = 0 (9)

∀i < j ∈ A − tij ≤ 0, tij ≤ T (10)

∀i < j ∈ A
∑

k∈{1,2}
((x0ik − x0jk) + tij(qiviuik − qjvjujk))2 ≥ d2 (11)

The last constraint Eq. (11) is necessary to ensure that each KKT solution t∗ij respects the safety
distance.

2.3 Dual reformulation

We propose another closely related reformulation of the bilevel problem (1)-(3), which arises because
the lower-level subproblems are convex Quadratic Programs (QP). Specifically, their duals are also
QPs which only involve dual variables [2, 3]. In particular, an upper-level constraint such as Eq. (3)
has the form const ≤ min{12 x>Qx+ p>x | Ax ≥ b∧x ≥ 0} with Q positive semidefinite. By strong
duality it can be written as follows:

const ≤ max{−1

2
y>Qy + b>z | A>z −Qy ≤ p ∧ z ≥ 0}, (12)

where the maximization QP on right hand side is the dual of the previous minimization one [3].

Proposition 1. Eq. (12) can be replaced by const ≤ −1
2 y
>Qy + b>z ∧ A>z −Qy ≤ p ∧ z ≥ 0 (∗)

in Eq. (1)-(3).

Proof. If Eq. (12) is active, then the maximum objective function value of the QP is const. Because
of the max operator, the objective function of the QP cannot attain any larger value. This means
that (∗) can only be feasible when −1

2 y
>Qy + b>z attains its maximum over A>z − Qy ≤ p and

z ≥ 0. If Eq. (12) is inactive, it has no effect on the optimum. Since (∗) is a relaxation of Eq. (12),
the same holds.

Prop. 1 yields the following reformulation of 1-(3).

min
q∈[qmin,qmax]

z≥0,y

∑

i∈A
(qi − 1)2 (13)

∀i < j ∈ A −
2∑

k=1

(qiviuik − qjvjujk)2 y2ij + (−T )zij ≥ d2 −
2∑

k=1

(x0ik − x0jk)2 (14)

∀i < j ∈ A − zij
2
−

2∑

k=1

(qiviuik − qjvjujk)2 yij ≤
2∑

k=1

(x0ik − x0jk)(qiviuik − qjvjujk) (15)
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3 Computational results

We considered the set of instances proposed in [1], where n aircraft are placed on a circle of
given radius r, with initial speed vi and a trajectory defined by a heading angle such that aircraft
fly toward the center of the circle (or slightly deviating with respect to such direction). Then
we also considered instances in which aircraft move along straight trajectories intersecting in nc
conflict points. We set: T = 2 hours, d = 5 NM, vi = 400 NM/h for each i ∈ A. For the “circle
instances” the heading angles capi are randomly generated and parameters x0ik and uik are given
by ui1 = cos(capi), ui2 = sin(capi), x

0
ik = −r uik. The bounds qmin

i and qmax
i are set to 0.94 and 1.03

respectively. We implemented the proposed formulations using the AMPL modeling language [4]
and solved them with the global optimization solver Baron [5] (B in the Table 1) or, when Baron
was not successful, with a Multistart algorithm (MS in the Table 1) with 1000 iterations in total.
The Multistart method for the KKT reformulation uses SNOPT [6] at each iteration, while the
one for the Dual reformulation uses IPOPT [7]. Our results are reported in Table 1, and compared
with those that are the best among the ones obtained with different methods in [1] and [8].

Instance Cafieri KKT reformulation Dual reformulation

n nc r obj (Best solution) obj time(s) solver obj time(s) solver

Circle instances

2 - 100 0.002531 0.002524 0.28 B 0.002526 0.41 B
3 - 200 0.001667 0.001664 1.49 B 0.001663 3.70 B
4 - 200 0.004009 0.004025 65.42 B 0.004017 184.4 B
5 - 300 0.003033 0.003052 12511 B 0.003050 13978 B
6 - 300 0.006033 0.006088 31.99 MS 0.006096 7.84 MS

Non-circle instances

6 5 0.001295 0.001254 53.31 MS 0.001254 14.88 MS
7 4 0.001617 0.001591 238.82 MS 0.001591 31.17 MS
7 6 0.001579 0.001566 86.95 MS 0.001566 33.18 MS
8 4 0.002384 0.002384 1163 MS 0.002384 39.54 MS
10 10 0.001470 0.001469 835.24 MS 0.001397 78.90 MS

Table 1
Looking at the solutions obtained on these instances, it appears that they are comparable. The
value of the objective function is always very low, given the nature of the problem (q must be in
[0.94, 1.03]). For the bigger instances, the reformulation which ensures the minimum solving time
is the Dual one.
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Abstract

Markov Decision Processes are stochastic optimization problems that model situations where
a decision maker controls a system based on its state. Partially observed Markov decision
processes (POMDPs) are generalizations of Markov Decision Processes where the decision maker
has only partial information on the state of the system. Such problems naturally model a wide
range of applications such as predictive maintenance. Finding an optimal policy for a POMDP
is PSPACE-hard and practically challenging. We introduce a mixed integer linear programming
version for POMDPs where decisions are taken based only on the current observation, as well
as valid inequalities that are based on a probabilistic interpretation of the dependence between
variables. The linear relaxation provides a good bound for the usual POMDPs where the
policies depend on the full history of observations and actions. POMDPs suffer from the curse
of dimensionality, and systems composed of multiple components evolving independently but
linked by a common action, which are relevant in the context of predictive maintenance, are
typically intractable. We introduce decomposable POMDPs and a heuristic to solve them to be
able to deal with such system. Numerical experiments show the efficiency of our approach.

1 Introduction

Many real-world problems where a decision maker controls a stochastic system evolving over time
can be modeled as Partially Observed Markov Decision Processes (POMDPs). In such problems, at
each timestep, the system is in a state s in some finite state space XS . The decision maker does not
observe s, but has access to an observation o that belongs to some finite observation space XO, and
is randomly emitted with probability p(o|s). Based on this observation, the decision-maker chooses
an action a from some finite action space XA. The system then transits randomly to a new state
s′ in XS with probability p(s′|s, a) and the decision maker obtains an immediate reward r(s, a, s′).
The goal of the decision maker in POMDP problem is to find a policy δta|o, which represents a
conditional probability of taking action a in XA given observation o in XO at time t, maximizing
the expected total reward over a finite horizon T

max
δ∈∆

Eδ

[ T∑

t=1

r(St, At, St+1)

]
, (1)

where St and At are random variables representing the state and the action at time t and the
expectation over δ is taken with respect to the distribution Pδ induced by the policy δ chosen in
the set of policies ∆. δ and ∆ are defined in section 2. In the POMDP literature, we usually
assume that there is perfect recall, i.e., the decision is taken given all history of observation and
actions at each time step. Hence the policy lies in a greater set of policies ∆PR ⊃ ∆. POMDPs
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are a generalization of the well-known Markov Decision Processes (MDPs). Many applications
involve systems composed of several components. In such case, the spaces become too large and
usual exact methods become computationally intractable (curse of dimensionality). We introduce
decomposable POMDPs to model such systems. Our contributions are as follows :

1. We propose a mixed-integer linear program (MILP) that exactly solves Problem (1). This
formulation generalizes the usual dual linear program for MDP (see [2]).

2. We introduce an extended formulation with new valid inequalities that improve the resolution
of our mixed-integer linear program. Such inequalities come from a probabilistic interpreta-
tion of the dependence between random variables. Experiments show their efficiency.

3. Leveraging the MILP previously mentioned, we propose a heuristic policy for decomposable
POMDPs.

2 Mixed Linear Programming for Partially Observed Markov De-
cision Processes

In this section, we present an MILP that exactly models Problem (1). Given N in Z+ we use the
notation [N ] for {1, . . . , N}. Our goal is to solve Problem (1), where

∆ =

{
δ ∈ RT×|XA|×|XO|,

∑

a∈XA

δta|o = 1 and δta|o ≥ 0,∀o ∈ XO, a ∈ XA, t ∈ [T ]

}
,

and Pδ and Eδ denote the probability distribution and expectation induced by policy δ on the
random variables (St, Ot, At)t, which respectively denote the state, the observation and the action
at time t. We define the set of deterministic policies ∆0 = ∆ ∩ {0, 1}T×|XA|×|XO|. Note that ∆ is
the convex hull of ∆0. Any policy in ∆\∆0 is a randomized policy.

2.1 A mixed-integer linear program

It is well-known that there always exists an optimal deterministic policy for MDPs. This result
can be extended to POMDPs [3, e.g. Lemma C.1]. We introduce a collection of variables µ =(
(µts)s, (µ

t
sa)s,a, (µ

t
soa)s,o,a

)
t

and the following mixed-integer linear program (MILP).

max
µ,δ

T∑

t=1

∑

s,s′∈XS
a∈XA

r(s, a, s′)p(s′|s, a)µtsa (2a)

s.t. µ1
s = p(s) ∀s ∈ XS (2b)

µt+1
s′ =

∑

s∈XS ,a∈XA

p(s′|s, a)µtsa ∀s′ ∈ XS , t ∈ [T ] (2c)

µtsa =
∑

o∈XO

µtsoa ∀s ∈ XS , a ∈ XA, t ∈ [T ] (2d)

µtsoa ≤ p(o|s)µts ∀s ∈ XS , o ∈ XO, a ∈ XA, t ∈ [T ] (2e)

µtsoa ≤ δta|o ∀s ∈ XS , o ∈ XO, a ∈ XA, t ∈ [T ] (2f)

µtsoa ≥ p(o|s)(µts + δta|o − 1) ∀s ∈ XS , o ∈ XO, a ∈ XA, t ∈ [T ] (2g)

δ ∈ ∆o (2h)

µ ≥ 0 (2i)
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We show that a feasible solution µ of Problem (2) can be interpreted as a probability distribution
over the random variables, i.e, µts, µ

t
sa and µtsoa respectively represent the probabilities Pδ

(
St = s

)
,

Pδ

(
St = s,At = a

)
and Pδ

(
St = s,Ot = o,At = a

)
for all s in XS , o in XO, a in XA and t in

[T ]. Let v∗ and z∗ respectively denote the optimal values of Problem (1) and Problem (2). The
following theorem ensures that MILP (2) models Problem (1).

Theorem 1 Let (µ, δ) be a feasible solution of Problem (2). Then µ is equal to the distribution
Pδ induced by δ, and (µ, δ) is an optimal solution of Problem (2) if, and only if δ is an optimal
deterministic policy of Problem (1). Furthermore, v∗ = z∗.

Furthermore, it can be shown that the linear relaxation of MILP (2) gives an upper bound on the
value of the perfect recall POMDP. In the next section, we provide valid inequalities that improve
this linear relaxation.

2.2 Valid inequalities

The difficulty of POMDP comes from the fact that

action variable At is independent from state St given observation Ot, (3)

which induces non-linearities. A corollary of these independences is that

At is independent from St given Ot, At−1 and St−1. (4)

Theorem 1 ensures that these independences are satisfied by the distribution µ corresponding to an
integer solution (µ, δ) of MILP (2). If the component µ of a solution (µ, δ) of the linear relaxation
of MILP (2) can still be interpreted as a distribution, independences (3) and (4) are unfortunately
no longer satisfied according to this distribution. We now introduce an extended formulation and
valid inequalities that enable to restore independences (4).
We introduce new variables µts′a′soa that can be interpreted as the probabilities

P(St−1 = s′, At−1 = a′, St = s,Ot = o,At = a).

Consider the following equalities
∑

s′∈XS ,a′∈XA

µts′a′soa = µtsoa, ∀s ∈ XS , o ∈ XO, a ∈ XA, (5a)

∑

a∈XA

µts′a′soa = p(o|s)p(s|s′, a′)µt−1
s′a′ , ∀s′, s ∈ XS , o ∈ XO, a′ ∈ XA, (5b)

µts′a′soa = p(s|s′, a′, o)
∑

s∈XS

µts′a′soa, ∀s′, s ∈ XS , o ∈ XO, a′, a ∈ XA, (5c)

where
p(s|s′, a′, o) = P(St = s|St−1 = s′, At−1 = a′, Ot = o).

Note that p(s|s′, a′, o′) does not depend on the policy δ and can be easily computed using Bayes
rules. Therefore, constraints in (5) are linear.

Proposition 2 Equalities (5) are valid for Problem (2), and there exists solution µ of the linear
relaxation of (2) that does not satisfy constraints (5).

Hence, constraints (5) strengthen the linear relaxation. Numerical experiments in Section 3 show
the efficiency of such valid inequalities.
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∣∣XS
∣∣ ∣∣XO

∣∣ ∣∣XA
∣∣ T Nb. Policies Prog. Int. Gap (%) Final Gap (%) Time (s)

3 5 5 10 1034 (2) 8.88 Opt 12
(2) and (5) 2.61 Opt 3.58

20 1069 (2) 9.06 2.56 TL
(2) and (5) 2.45 Opt 116.54

4 8 8 10 1072 (2) 15.50 8.64 TL
(2) and (5) 1.77 Opt 383.32

20 10144 (2) 15.64 12.57 TL
(2) and (5) 1.29 0.62 TL

Table 1: POMDP results using MILP (2) with and without (5), with a time limit TL=3600s

3 Numerical experiments

We now provide experiments showing the practical efficiency of our approaches to POMDPs and
decomposable POMDPs. All linear programs have been implemented in Julia with JuMP interface
and solved using Gurobi 7.5.2. Experiments have been run on a server with 192Gb of RAM and 32
cores at 3.30GHz. Each instance is generated by first choosing

∣∣XS
∣∣,
∣∣XO

∣∣,
∣∣XA

∣∣. We then randomly
generate the initial probability p(s), the transition probability p(s′|s, a), the emission probability
p(o|s) and the immediate reward function r(s, a, s′). We solve Problem (2) with and without valid
equalities (5). Table 1 shows the efficiency of MILP (2) to solve (1). The first four columns indicate
the size of state space

∣∣XS
∣∣, observation space

∣∣XO
∣∣, action space

∣∣XA
∣∣ and time horizon T . The fifth

and the sixth column indicate respectively the number of possible policies and the mathematical
program used to solve Problem (2) with or without constraints (5). In the last three columns, we
report the integrity gap, the final gap and the computation time for each instance.

4 Decomposable POMDPs

In many applications, the system is composed of several components. For example, in predictive
maintenance, a machine is composed of several deteriorating components and each component
evolves independently and individually as a POMDP. Having limited maintenance capacities, the
decision maker must at each time step choose which components must be maintained urgently.
The decision maker does not have access to the component’s wear and takes his action while
observing output signals from each component. We introduce decomposable POMDPs to model
such problems. Since the size of spaces grows exponentially with the number of component, there
is no tractable algorithms to solve it. Leveraging the MILP formulation (2), we propose a heuristic
policy for such problems (see [1] for further details).
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Introduction

We address a single machine scheduling problem arising in a last mile delivery setting for a food
company. In the last few years, due to the recent boost of ubiquitous technologies for the e-
commerce, meal delivery services viewed a great transformation which is reflected in the dramatic
growth of the food delivery sector as shown by the advances of companies like Deliveroo, GrubHub,
or Just-Eat. Concurrently, a considerable share of research has dealt with food delivery logistics.
See for instance, [2, 4, 5], just to mention some papers submitted/published in the last year.

The problem we are dealing with in this paper is the following: A set of (prepared) food orders
are placed by the customers and are to be fulfilled by the company. For each order a delivery
point and a desired delivery time are specified. All food is processed in a single production facility
(restaurant) and then immediately carried to the customers by a single courier. The latter is
allowed to dispatch at most two different orders in a single trip. For each order there is an allowed
time window for its delivery which lasts δ time units (min.) centered on the ideal delivery time.
An order is considered on time if and only if it is delivered within that time window and it is late
otherwise. Since late deliveries correspond to canceled orders and an economic loss, the company
tries to schedule orders so that the number of late orders is minimized.

In this paper, we model the resulting decision problem as a special single machine scheduling
problem and present dual bounds which can be exploited in an implicit enumeration scheme like,
e.g., a branch and bound algorithm. The performance of these bounds is assessed through a
computational study on a set of test instances derived by our real-world application.

Problem description

A given set of meal-orders J = {1, . . . , n} are to be allocated to a (single) restaurant, where the
food is prepared. Their ideal delivery times are denoted as d′j and restaurant-destination travel
times tj are also given, for all j ∈ J .

We first consider the case in which the courier is delivering a single order. The restaurant may
be regarded as a depot from which the courier starts when he is shipping, say, the j-th order, and
where he will go back immediately after the order has been delivered to the customer. If s is the
j-th order pick-up time at the restaurant, then the delivery time is given by s+ tj . As we already
mentioned, an order is considered on time if it is delivered in an interval of δ minutes centered
around the ideal time chosen by the customer, i.e., if

d′j −
δ

2
≤ s+ tj ≤ d′j +

δ

2
.
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If the courier—considered a single moving resource—is carrying just one order, he is not available
for processing any other order i 6= j until he will be back again to the restaurant. In conclusion,
we may view the orders as jobs (tasks) and the single courier as a single machine of a scheduling
problem where each task j ∈ J is associated to the following data:

The due date dj is the latest possible time for the courier to complete the j-th delivery on time
and get back to the restaurant and it is therefore dj = d′j + δ/2 + tj . The release date rj is the
earliest possible time to start from the restaurant while delivering the j-th order on time to the
customer. It can be written as rj = d′j − δ/2 − tj . The processing time pj represents the amount
of time the courier is busy with order j and, neglecting possible waiting times at the restaurant
and at the customer, it is given by the total travel time pj = 2tj of the courier from the restaurant
to the corresponding customer destination and back to the restaurant. (We assume the restaurant
schedules the required preparations so that the food is ready for immediate pick-up by the courier,
for any order j ∈ J .) In this framework, an order j is on time if and only if the corresponding
task starts (i.e., the courier picks the food at the restaurant) not before rj and completes (i.e., the
courier returns back to the restaurant and he is available for another trip) not later than dj .

Finding a sequence of orders to minimize the number of late deliveries is a special case of the
single machine scheduling problem with (arbitrary) release dates and due dates 1|rj |

∑
Uj . The

latter problem is, in general, strongly NP-hard. In our problem, as a consequence of the above
definitions, we have the relation dj = rj + pj + δ which makes this scheduling problem a special
case of 1|rj |

∑
Uj since due dates and release dates are interdependent.

Order aggregation. We are now considering the case in which the courier dispatches two orders
in a single trip from the restaurant to the two customers’ respective locations and back. We look at
this composite service as a special task (in the following equivalently referred to as a twin order or,
simply, a twin). We suppose that after the first delivery the courier immediately proceeds to consign
the second order of a twin, so we do not allow the introduction of any idle time between the two
deliveries (no-wait assumption). Clearly, a courier may fulfill two orders i and j in a single trip only
if it is possible to meet the corresponding delivery-time constraints under the no-wait assumption.
In this case, the twin composed by the ordered pair of tasks (i, j) (hereafter, for simplicity, indicated
by ij) is called a feasible twin, so that it may be regarded as a single aggregated task. Naturally
extending the concept of on-time order, we say that a twin order ij ∈ D is on time if so are both
its components.

Given two orders i, j ∈ J × J , we can express the difference between the time taken to travel
from customer i to j and the interval separating their ideal delivery times as

τij
def
= tij − (d′j − d′i) = tij − (dj − di) + 1/2(pj − pi).

It is not hard to show [2] that the twin ij is feasible, i.e., it is possible to deliver both orders i

and j on time, if and only if δij
def
= δ − |τij | ≥ 0. Therefore, we denote the set of feasible twins by

D = {ij : (i, j) ∈ J ×J, δij ≥ 0}. For notational convenience, we include in D, the special symbol
jj (for any j ∈ J) in order to represent a single task j as a twin (but not aggregated to another
task).

With some algebra (see [2]), it is easy to derive the release date, the processing time and the
due date of a twin ij, which are as follows:

rij
def
=

{
di − δ − pi (= ri) if τij > 0
dj − δ − 1

2(pj + pi)− tij if τij ≤ 0
(1)

pij
def
= tij + ti + tj = tij +

1

2
(pi + pj) (2)

dij
def
= rij + δij + pij . (3)
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Observe that, if τij > 0, then dij = dj .

Lower Bounds

Both bounds we are presenting in this section are based on partitioning the set of jobs (order) in a
number, say k, of classes J (1), . . . , J (k), then summing the contributions of each class to eventually
obtain a lower bound which is valid for the whole set of jobs. This is an idea similar to that described
in [1] where this concept is exploited to obtain assorted bounds through different methodologies.
We devised and tested several techniques to design partitions that return the best possible bounds.
In this regard, one of the best procedure works as follows: The planning interval (between the
minimum release time and maximum due date) [rmin, dmax] is divided in k time slots. Two jobs
are in the same class if and only if their release times are in the same time slot. We then have a
partition of the jobs in k classes.

Note that, when computing a lower bound, the twins are not known a priori. Hence, we need
an estimate from below of a job contribution to the processing time of any possible twin containing
that job. Recalling Equation 2 for a twin ij, we may use for job i the reduced duration pi/2.

“Flow based” lower bound. The first bound we describe presents some similarities to the so-
called “Flow based” lower bound of [1]. We compute a bound for the `-th class as follows. All
jobs i ∈ J (`) must be processed in the time window [r(`), d(`)], where r(`) = mini∈J(`){r1} and
d(`) = maxi∈J(`){di}. It is straightforward to see that if the overall durations of the jobs in J (`)

exceeds the time window length d(`)−r(`), then at least one job will be a tardy job. More precisely,
if we denote by i(h, `) the h-th shortest job in J (`) and we have

|J(`)|−m∑

h=1

1

2
pi(h,`) > d(`) − r(`),

then at least m + 1 jobs of J (`) are tardy. Clearly, the overall bound is given by summing up the
contributions from all J (`), for ` = 1, . . . , k.

The LHS of the above inequality may actually be increased by a factor that takes into account
travel times among clients (which contribute in the overall twin processing times). A lower estimate
of this factor can be computed as the minimum cost of a perfect matching on the undirected graph1

where vertices correspond to J , edges to D, and the costs of edge ij is tij .

Kise-Ibaraki-Mine lower bound. Analogous to the previous bound, we recur to the job set
partition J (1), . . . , J (k). We compute a bound for the `-th class by using a relaxation of the sub-
problem that makes the jobs of J (`) agreeable which implies that for any two jobs i and j such
that ri < rj then di ≤ dj . This way, we are allowed to use the Kise-Ibaraki-Mine algorithm [3] to
optimally solve the relaxation.

In order to determine the above relaxation, we basically enlarge the allotted intervals [rj , dj ].
Finding an effective way to do so (i.e., determine the minimum total enlargement so that the jobs
of J (`) become agreeable) is an interesting problem itself that can be solved in linear time.

Preliminary Computational Results

Hereafter we sketch some preliminary results of a set of experiments aimed at comparing the quality
of the two proposed lower bounds. The tests were run on 177 real-life instances (derived from the
test set used [2]) in which the number of orders n varies from 5 to 31, the optimal solution value is

1Depending on whether |J | is odd or even, the vertex set may include the restaurant or not.
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known and strictly positive for 143 of those instances. A state-of-the-art solver (namely, Gurobi) is
not able to optimally solve (natural MIP models for) the remaining 34 cases. Algorithms to compute
lower bounds were built using the Julia programming language and all tests were performed on a
computer equipped with an Intel Xeon E5-2643v3 3.40 GhZ CPU and 32 GB RAM.

A first comparison against the lower bounds provided by Gurobi shows that our bounds, al-
though not tight in most of the instances, are computed much faster and, in 91, 18% of the cases,
they outperform those bestowed by the solver even after 5 minutes of running time.

Table 1 reports the lower bounds values for the 143 optimally solved instances. Each of the last
three rows refers to a set of instances having the same optimal solution value, which is reported
in the first column. The second column records the number of instances with those solution value.
Columns 3–5 give the number of instances in which the “flow based” lower bound value is equal
to 1, 2, or 3. (For example, among the 8 instances with optimal solution value equal to 3, three
instances have LB = 2 and five instances have LB = 1). Columns 6–8 report the same data for the
Kise-Ibaraki-Mine lower bound, and the last three columns the best bounds between the two.

Table 1: Lower Bounds and Optimal values

OPT
# Inst

LBFB LBKIM BestLB
val. 1 2 3 1 2 3 1 2 3

1 104 7 - - 5 - - 9 - -
2 31 20 0 - 10 2 - 18 2 -
3 8 5 3 0 3 3 0 5 3 0
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Abstract

Competing firms tend to select similar locations for their stores. This phenomenon, called the principle
of minimum differentiation, was captured by Hotelling with a landmark model of spatial competition but
is still the object of an ongoing scientific debate. Although consistently observed in practice, many more
realistic variants of Hotelling’s model fail to support minimum differentiation or do not have pure equilibria
at all. In particular, it was recently proven for a generalized model which incorporates negative network
externalities and which contains Hotelling’s model and classical selfish load balancing as special cases,
that the unique equilibria do not adhere to minimum differentiation. Furthermore, it was shown that for
a significant parameter range pure equilibria do not exist.

We derive a sharp contrast to these previous results by investigating Hotelling’s model with negative
network externalities from an entirely new angle: approximate pure subgame perfect equilibria. This
approach allows us to prove analytically and via agent-based simulations that approximate equilibria
having good approximation guarantees and that adhere to minimum differentiation exist for the full
parameter range of the model. Moreover, we show that the obtained approximate equilibria have high
social welfare.

Introduction The choice of a profitable facility location is one of the core strategic decisions for firms
competing in a spatial market. Finding the right location is a classical object of research and has kindled the
rich and interdisciplinary research area called Location Analysis [32, 14, 6]. In this paper we investigate one of
the landmark models of spatial competition and strategic product differentiation where facilities offering the
same service for the same price compete in a linear spatial marked. Originally introduced by Hotelling [24]
and later extended by Downs [10] to model political competition, the model is usually referred to as the
Hotelling-Downs model. It assumes a market of infinitely many clients which are distributed evenly on a
line and finitely many firms which want to open a facility and which strategically select a specific facility
location in the market to sell their service. Every client wants to obtain the offered service and selects the
nearest facility to get it. The utility of the firms is proportional to the number of clients visiting their facility.
Thus, the location decision of a firm depends on the facility locations of all its competitors as well as on the
anticipated behavior of the clients. This two-stage setting is challenging to analyze but at the same time
yields a plausible prediction of real-world phenomena.

One such phenomenon is known as the principle of minimum differentiation [5, 13] and it states that
competing firms selling the same service tend to co-locate their facilities instead of spreading them evenly
along the market. This can be readily observed in practice, e.g., stores of different fast-food chains or consumer
goods shops are often located right next to each other. For the original version where clients simply select the
nearest facility, Eaton and Lipsey [13] proved in a seminal paper that for n 6= 3 competing firms the Hotelling-
Downs model has pure subgame perfect equilibria which respect the principle of minimum differentiation.

However, the original Hotelling-Downs model is overly simple. A more realistic variant, where the cost
function of a client is a linear combination of distance and waiting time, was proposed by Kohlberg [25] and
will be the focus of our attention. Kohlberg’s model is especially interesting, since it can be interpreted as
an interpolation of two extreme models: the Hotelling-Downs model, where clients select the nearest facility
and classical Selfish Load Balancing [39], where clients select the least congested facility.

For Kohlberg’s model it is known that no pure subgame perfect equilibria exist where the facility locations
are pairwise different. Furthermore, in a recent paper Peters et al. [31] show for up to six facilities that pure
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equilibria exist if and only if there is an even number of facilities and the clients’ cost function is tilted
heavily towards preferring less congested facilities. Moreover, in sharp contrast to the principle of minimum
differentiation, they show that in these unique equilibria only two facilities are co-located.

In this paper we re-establish the principle of minimum differentiation for Kohlberg’s model by considering
approximate pure subgame perfect equilibria. We believe that in contrast to studying exact subgame perfect
equilibria, investigating approximate subgame perfect equilibria yields more reliable predictions since the
study of exact equilibria assumes actors who radically change their current strategy even if they can improve
only by a tiny margin. In the real world this is not true, as many actors only move out of their “comfort
zone” if a significant improvement can be realized. This threshold behavior can naturally be modeled via a
suitably chosen approximation factor. Furthermore, approximate equilibria are the only hope for a plausible
prediction for many variants of the Hotelling-Downs model where exact equilibria do not exist. To the best
of our knowledge, approximate equilibria have not been studied before in the realm of Location Analysis.

Related Work The Hotelling-Downs model was also analyzed for non-linear markets, e.g., on graphs [30,
20, 19], fixed locations on a circle [34], finite sets of locations [27, 28], and optimal interval division [36].
Moreover, many facility location games are variants of the Hotelling-Downs model and there is a rich body
of work analyzing them [38, 7, 33, 11, 21, 18, 15] and Vornoi games [2, 12, 3].

In our model facilities offer their service for the same price. Models where facilities can also strategically
set the price have been considered [9, 26, 22, 8, 29, 23, 1]. Other recent work investigates different client
attraction functions instead of simply using the distance to the facilities [4, 16, 35].

Using agent-based simulations for variants of the Hotelling-Downs model seems to be a quite novel ap-
proach. We could find only the recent work of van Leeuwen & Lijesen [37] in which the authors claim to
present the first such approach. They study a multi-stage variant with pricing which is different from our
setting.

Our Contribution We study approximate pure subgame perfect equilibria in Kohlberg’s model of spatial
competition with negative network externalities in which n facility players strategically select a location in a
linear market. Our slightly reformulated model has a parameter 0 ≤ α ≤ 1, where α = 0 yields the original
Hotelling-Downs model, i.e., clients select the nearest facility, and where α = 1 yields classical selfish load
balancing, i.e., clients select the least congested facility.

First, we study the case n = 3, which for α = 0 is the famous unique case of the Hotelling-Downs model
where exact equilibria do not exist. We show that for all α an approximate subgame perfect equilibrium
exists with approximation factor ρ ≤ 1.2808. Moreover, for α = 0 we show that this bound is tight.

Next, we consider the facility placement which is socially optimal for the clients and analyze its approx-
imation factor, i.e., we answer the question how tolerant the facility players have to be to accept the social
optimum placement for the clients. For this placement, in which the facilities are uniformly distributed along
the linear market, we derive exact analytical results for 4 ≤ n ≤ 10. Building on this and on a conjecture
specifying the facility which has the best improving deviation, we generalize our results to n ≥ 4. We find
that the obtained approximation factor ρ approaches 1.5 for low α which implies that in these cases facility
players must be very tolerant to support these client optimal placements (cf. Fig. 1).

0 0.2 0.4 0.6 0.8 1
1
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1.6

α

ρ

n ≥ 4

Figure 1: Results for client-optimal facility placement.

We contrast this by our main contribution, which is a study of a facility placement proposed by Eaton &
Lipsey [13] (cf. Fig. 2) from an approximation perspective. This placement supports the principle of minimum
differentiation since all but at most one facility are co-located with another facility and at the same time it
is an exact equilibrium for both extreme cases of the model, i.e., for α = 0 and α = 1. We provide analytical
proofs that for these placements ρ ≤ 1.0866 holds for 4 ≤ n ≤ 10. Also, based on another conjecture, we
show that for arbitrary even n ≥ 10 we get ρ ≈ 1.08 (cf. Fig. 3).
Our conjectures used for proving the general results are based on the analytical results for n ≤ 10 and on
extensive agent-based simulations of a discretized variant of the model. It turns out that these simulations
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Figure 2: Facility placements from [13] for 4 ≤ n ≤ 10. Co-located facilities are red, single facilities are
colored blue.

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

α

ρ

n = 4 n = 5 n ≥ 6 (even)
n = 7 n = 9

Figure 3: Results for facility placements from [13].

yield reliable predictions for the original model and we also use them for providing promising results for the
general case with odd n. In particular, we demonstrate that empirically we have ρ ≈ 1.08 for arbitrary n ≥ 10.

Last but not least, we show that the facility placements proposed by Eaton & Lipsey [13] are also socially
good for the clients. We compare their social cost with the cost of the social optimum placement and prove
a low ratio for all α.

All omitted details can be found in the full version [17].

Conclusion We demonstrate that for Kohlberg’s model facility placements exist which adhere to the prin-
ciple of minimum differentiation, are close to stability in the sense that facilities can only improve their utility
by at most 8% by deviating and these placements are also socially beneficial for all clients. This remarkble
contrast to the results of Peters et al. [31] indicates that studying approximate equilibria may yield more
realistic results than solely focusing on exact equilibria. Moreover, investigating approximate equilibria may
also lead to new insights for other models in the realm of Location Analysis.
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[27] M. Núñez and M. Scarsini. Competing over a finite number of locations. Economic Theory Bulletin,

4(2):125–136, Oct. 2016.
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1Université libre de Bruxelles, Brussels, Belgium
2University of Twente, Enschede, Netherlands

Abstract

The nonnegative rank of a matrix is the smallest inner dimension when writing it as a product
of two nonnegative matrices. Such nonnegative matrix factorizations have numerous applications
in machine learning and data mining, where one usually allows inexact factorizations. The
exact counterpart is related to the so-called extension complexity of a polytope, an important
parameter in combinatorial optimization.

We implemented different algorithms for computing lower bounds on the nonnegative rank
of a matrix. In this extended abstract we focus on results that relate our best algorithms’
performance to the size of the matrix.

1 Introduction

Let M ∈ Rm×n≥0 be a nonnegative matrix. A nonnegative factorization of M is a product M = X ·Y
with X ∈ Rm×r≥0 and Y ∈ Rr×n≥0 , where we call r the rank of the factorization. Expressing a given
data matrix as M ≈ X · Y with a small r is the (approximate) nonnegative matrix factorization
problem. The exact version of the problem is to compute the nonnegative rank rk+(M) of M ,
defined as the smallest such r with M = X · Y . This quantity has an important interpretation in
polyhedral combinatorics [1], which we briefly outline.

The extension complexity of a polytope P is the smallest number of facets of any (typically
higher-dimensional) polytope Q that affinely projects to P . The number of facets is equal to the
(minimum) number of inequalities that are necessary to describe Q in a linear programming (LP)
formulation. Suppose we have an inner description of P ⊆ Rd in terms of its vertices x1, x2, . . . , xn ∈
Rd as well as an outer description in terms of linear inequalities Ax ≤ b with A ∈ Rm×d. Then the
corresponding slack matrix M ∈ Rm×n≥0 has entries Mi,j := bi − Ai,∗xj . Yannakakis [8] proved that
rk+(M) is equal to the extension complexity of P . Since its computation is notoriously hard, in
our paper we deal with the computation of lower bounds.

2 Lower bounds

Combinatorial bounds. Let S := supp(M) := {(i, j) ∈ [m]× [n] : Mi,j > 0} denote the support
of M . We call an index set R ⊆ [m] × [n] a rectangle if R ⊆ S and if it is of the form R = I × J
for I ⊆ [m] and J ⊆ [n]. We denote by R the set of all rectangles. Every nonnegative factorization
with inner dimension r induces a covering of S with r rectangles (see [8, 2]), which establishes the
rectangle covering bound rc(M). It can be computed using the integer program (IP)

min
λ∈ZR≥0

{∑

R∈R
λR :

∑

R∈R: s∈R
λR ≥ 1 ∀s ∈ S

}
. (rc)
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Since this is a minimization problem, the optimum value of its LP relaxation, called the fractional
rectangle covering bound and denoted by frc(M), is also a lower bound on rk+(M).

Both bounds can be refined slightly by considering entry pairs s1, s2 ∈ S with s1 = (i1, j1)
and s2 = (i2, j2). We call {s1, s2} a fooling pair if Mi1,j1 ·Mi2,j2 > Mi1,j2 ·Mi2,j1 > 0 holds and
denote by P the set of all fooling pairs. Although {i1, i2} × {j1, j2} is a rectangle, its induced
submatrix of M has rank 2. Thus, at least one of the entries must be covered by two rectangles in
any rectangle covering induced by a nonnegative factorization of M . This observation was made
in [6] and establishes the refined rectangle covering bound rrc(M), defined via the IP

min
λ∈ZR≥0




∑

R∈R
λR :

∑

R∈R: s∈R
λR ≥ 1 ∀s ∈ S,

∑

R∈R: s1∈R∨s2∈R
λR ≥ 2 ∀ {s1, s2} ∈ P



 . (rrc)

Once again we define the bound based on the value of the its LP relaxation frrc(M), called the
fractional refined rectangle covering bound.

Another combinatorial bound is the fooling set bound fs(M) that is derived from the packing
counterpart of the rectangle covering problem It is defined as

max {|F | : F ⊆ S such that |F ∩R| ≤ 1 for all R ∈ R} , (fs)

and we call the feasible sets F ⊆ S fooling sets. It is equal to the maximum size of a clique in an
auxiliary graph in which nodes correspond to entries of S and two nodes are connected by an edge
if and only if their entries are not contained in a rectangle.

Hyperplane separation bounds. In contrast to the combinatorial bounds the hyperplane sepa-
ration bound also exploits the actual entries of M . It was suggested by Fiorini and used to establish
an exponential lower bound on the extension complexity of the perfect matching polytope [7]. For
its correctness we refer to Lemma 1 therein. It reads

hsb(M) := max

{〈W,M〉
||M ||∞

: W ∈ Rm×n, 〈W,χ(R)〉 ≤ 1 for all R ∈ R
}
, (hsb)

where χ(R) ∈ {0, 1}m×n is the characteristic vector of R. Note that the entries Wi,j with (i, j) /∈ S
do not play a role in the model. By restricting Wi,j to be nonnegative for all (i, j) ∈ S, we obtain
the weaker version, called the nonnegative hyperplane separation bound and denoted by nhsb(M).

3 Computational study

In our software tool nonnegrank [3] we implemented all lower bounds from Section 2 (see Table 1).
Our code is written in C++ and relies on different external libraries. Several bound computations
can be made more efficient in two ways. First, if the input matrix M has some symmetry, then the
computational effort can often be reduced by reducing the dimension of the problem. Second, if the
set Rmax ⊆ R of inclusion-wise maximal rectangles is available explicitly, then several subproblems
can be solved more quickly. Our software can compute Rmax in time polynomial in |S| and |Rmax|
using Ganter’s Next Closure Algorithm [4]. Finally, in case this enumeration shall be avoided, we
provide an implementation of (rc) and (rrc) using branch-and-price.

42



Table 1: Implemented bounds with their used external libraries, depending on availability of Rmax

(column Enum) and information whether symmetry can be exploited (column Symmetry).

Bound Enum Implementation [libraries] Symmetry
fs No Graph model for (fs) [Cliquer] or IP model [Gurobi or SCIP] No
rc Yes Model (rc) over Rmax [Gurobi or SCIP] No

No Branch-and-price for Model (rc) [SCIP] No
rrc Yes Model (rrc) over Rmax [Gurobi or SCIP] No

No Branch-and-price for Model (rrc) [SCIP] No
frc Yes LP of Model (rc) over Rmax [Gurobi or SoPlex] Yes

No LP of Model (rc) [Gurobi or SCIP] Yes
frrc Yes LP of Model (rrc) over Rmax [Gurobi or SoPlex] Yes

No LP of Model (rrc) [Gurobi or SCIP] Yes
hsb Yes/No Model (hsb) [Gurobi or SCIP] Yes
nhsb Yes Model (hsb) with Ws ≥ 0 ∀s ∈ S over Rmax [Gurobi or SoPlex] Yes

No Model (hsb) with Ws ≥ 0 ∀s ∈ S [Gurobi or SCIP] Yes
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Figure 1: Running times for various bound computations. Time limit: 600 s. Balls above dotted
line indicate number of timeouts. IP/LP solver was Gurobi, rectangle enumeration turned on,
symmetry detection turned off.

Setup. In this extended abstract we report results only for two types of instances, both derived
from slack matrices of polytopes with dimensions 6, 7 or 8. The first are random 0/1-polytopes
with prescribed ambient dimension and expected number of vertices. The second set is derived
from 2-level polytopes randomly chosen from the 2-level polytope database from [5]. Our test were
run single threaded on a machine with 2.97 GHz and 8 GB memory.
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Experimental results. For the sake of this extended abstract, we restrict ourselves to consider-
ing computational results corresponding to the aggregated dataset. We set a time limit of 600 s and
use Gurobi as the undelying solver, since SCIP turned out to be generally slower on our instances.
Moreover, we do not report detailed results for symmetry breaking algorithms since they were gen-
erally faster in case symmetry was present. On the one hand, we notice that slack matrices of 2-level
polytopes exhibit considerable symmetries. On the other hand slack matrices of 0/1-polytopes did
not present symmetries. When possible, we use the complete enumeration of rectangles in Rmax

and provide the corresponding reduced running times. Figure 1 shows the resulting computation
times as a function of the size of the support of the input nonnegative matrix. Moreover, it is easy
to see that the computation of hsb is the most time-consuming, the reason being that a cutting
plane method has to be adopted (even when Rmax is computed). It is interesting to notice that rc
can be computed within the time limit of 600 s for many instances with support of size greater than
1000, even though it requires to solve an IP. The slightly more complicated bound rrc is harder to
compute, involving contraints corresponding to fooling pairs.

Future work. In the full version of this abstract, we plan to have a detailed comparison of the
lower bounds in Section 2, in order to provide a complete evaluation of the quality of the bounds,
and compare it with the running times.
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Abstract

A graceful labeling of a graph G with m edges consists of labeling the vertices of G with
distinct integers from 0 to m such that, when each edge is assigned as induced label the absolute
difference of the labels of its endpoints, all induced edge labels are distinct. The Graceful game
was introduced by Tuza in 2017 as a two-players game on a connected graph in which Alice
and Bob take turns labeling the vertices with distinct integers from 0 to m. Alice’s goal is
to gracefully label the graph as Bob’s goal is to prevent it from happening. In this work, we
study winning strategies for Alice and Bob in complete graphs, paths, cycles, complete bipartite
graphs, caterpillars, prisms, wheels and hypercubes.

1 Introduction

Graph labelling is an area of graph theory that has been gaining a particular importance since the
1960’s. The main concern in this area consists in determining the feasibility of assign labels (usually
numbers) to the elements of a graph satisfying certain conditions. However, the idea of assigning
symbols other than numbers to the elements of a graph is not recent. For example, an old and
very studied problem in graph theory is the vertex coloring problem, which consists in determining
the least number of colors needed to color the vertices of a given graph such that any two adjacent
vertices receive distinct colors. Vertex colorings arose in connection with the well known Four Color
Conjecture, which remained open for more than 150 years until its solution in 1976 [1].

In the last decades, many contexts have emerged where it is required to label the vertices or the
edges of a given graph with numbers. Most of these problems, such as harmonious labelings [10]
and L(2,1)-labelings [11], emerged naturally from modeling of optimization problems on networks.
Formally, given a graph G and a set L ⊂ R, a labeling of G is a vertex labeling f : V (G)→ L that
induces an edge labeling g : E(G)→ R in the following way: g(uv) is a function of f(u) and f(v),
for all uv ∈ E(G), and g respects some specified restrictions.

One of the most studied graph labelings is the graceful labeling, so named by S. W. Golomb [9]
and initially introduced by A. Rosa [15] in 1996. A graceful labeling of a graph G with m edges is
an injective function f : V (G) → {0, 1, . . . ,m} such that, when each edge uv ∈ E(G) is assigned
the (induced) label g(uv) = |f(u)−f(v)|, all induced edge labels are distinct, that is, the (induced)
edge labeling g is also injective. Graph G is called graceful when it has a graceful labeling. The
most studied open problem related to graceful labelings is the Graceful Tree Conjecture, which
states that all trees are graceful [15]. For a comprehensive list of old and recent results on graceful
labelings, the reader is referred to Gallian’s dynamic survey [7].

∗This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001, CNPq and FAPERJ.
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From the vast literature of Graph Labeling (more than two thousand papers [7]), it is notorious
that labeling problems are usually studied from the perspective of determining whether a given
graph has a required labeling or not. An alternative perspective is to analyze labeling problems
from the point of view of combinatorial games. The study of combinatorial games is a classical
area in both discrete mathematics and game theory [3]. In most combinatorial games, two players
— traditionally called Alice and Bob — alternately select and label vertices or edges (typically one
vertex or edge in each step) in a graph G which is completely known for both players.

Only a few papers have been published on labeling games so far [2, 4, 5, 8, 12, 16]. In a recent
survey, Z. Tuza [16] survey the area and proposes new labeling games such as the graceful game
studied in this work. While the number of articles published in labeling games has been scarce, in
the related area of graph colorings, there is a track of research concerning ‘game chromatic number’
that has more than fifty papers published in it (see Tuza and Zhu’s survey [17].)

In this work, we investigate the graceful game, proposed by Tuza [17], and study winning strate-
gies for Alice and Bob in complete graphs, paths, cycles, complete bipartite graphs, caterpillars,
prisms, wheels and hypercubes. This paper is organized as follows: Section 2 presents auxiliary
results and definitions. Section 3 presents our main results on the graceful game and, in Section 4,
we set our conclusion and perspectives.

2 Basic notation and auxiliary lemmas

Before presenting our main results, some definitions are needed. Let G be a simple graph with
vertex set V (G) and edge set E(G). We denote an edge e ∈ E(G) by uv where u and v are its
endpoints. Moreover, we also say that the edge e connects u and v and that u and v are adjacent.
An element of G is a vertex or an edge of G.

The Graceful Game is defined in the following way: Alice and Bob alternately assign a previously
unused label φ(v) ∈ {0, . . . ,m} to a previously unlabeled vertex v of a given graph G. If both
endpoints of an edge uv ∈ E(G) are labeled, the label of uv is defined as |φ(u) − φ(v)|. A move
(label assignment) is said to be legal if, after it, all edge labels are distinct. In the Graceful Game,
Alice wins if the whole graph G is gracefully labeled, and Bob wins if he can prevent this.

It is well known that not every graph is graceful [9]. For non-graceful graphs, it is immediate
that Bob is the winner and, therefore, the game is completely determined for such graphs. In this
work, we investigate classes of graphs for which it is possible to obtain a graceful labeling. In the
following, we state two auxiliary lemmas that are used in our proofs.

Lemma 1. Let G be a simple graph. Alice can only use the label 0 (resp. m) to label a vertex
v ∈ V (G) if v is adjacent to every remaining vertex not yet labeled or v is adjacent to a vertex
already labeled by Bob with m (resp. 0).

Proof. The only way to obtain an edge with label m is by assigning labels 0 and m to two adjacent
vertices. Thus, suppose Alice assigns 0 to a vertex v ∈ V (G), without Bob having yet labeled any
vertex with m and there is an unlabeled vertex not adjacent to v in the graph. On Bob’s next
move, he uses m to label the vertex that is not adjacent to v, making it impossible for Alice to
gracefully label the graph. The complementary case is analogous.

Lemma 2. Let G be a simple graph. If Bob assigns 0 (resp. m) to a vertex v ∈ V (G), where v has
two non-adjacent vertices or only one adjacent vertex, then Alice is forced to label a vertex adjacent
to v with m (resp. 0).
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3 Results

In this section, we state our main results. A path graph Pn is a connected graph on n vertices whose
vertices can be arranged in a linear sequence (v0, v1, . . . , vn−1) in such a way that two vertices are
adjacent if and only if they are consecutive in the linear sequence.

Theorem 3. Bob has a winning strategy for any Pn, n ≥ 4. For n = 3 the winner is the player
who starts the game, and Alice has a winning strategy for n = 1, 2.

Sketch of the proof. Alice always wins on P1 and P2 since there is only one way of labeling P1 and
P2, and they are both graceful. For P3, if Bob starts, it is sufficient that he labels v1 with 1. In
contrast, if Alice starts, she labels v1 with 0 or 2. Now, independently of Bob’s choice, the graph
is graceful. Paths P4 and P5 are treated separately and, using Lemmas 1 and 2, it is shown that
Bob can exhaust Alice’s possibilities of creating the edge label m−1. For Pn with n ≥ 6, let us say
Alice starts by labeling a vertex vi ∈ V (Pn), i ∈ {0, . . . , n−1}, with label j, j ∈ {0, . . . ,m = n−1}.
We can establish that if i ∈ {0, 1, 2}, then Bob labels vn−1 for the second vertex and, if i ≥ 3, he
chooses to label v0. Without loss of generality, we consider i ≥ 3. As agreed, Bob now labels v0

and his chosen label must be 0. This forces Alice to assign m to v1 for the third vertex and then,
Bob assigns m− 1 to v2 making it impossible for this labeling to be graceful. However, there exists
a problem that comes with this strategy: if Alice uses some label, Bob cannot use it again so, if
j = m− 1 the strategy is impracticable. In this case, instead of labeling v2 with m− 1, Bob labels
it with 2, guaranteeing his victory. The cases where i ∈ {0, 1, 2} are analogous.

A graph is bipartite if its vertex set can be partitioned into two subsets A and B so that every
edge has an endpoint in A and the other in B. A simple bipartite graph is complete, denoted Kp,q,
if each vertex of A is joined to each vertex of B, where p = |A| and q = |B|.
Theorem 4. Bob has a winning strategy for all Kp,q, p, q ≥ 2. Alice wins the Graceful game in
any bipartite graph K1,n−1 if she is the first player.

A complete graph Kn is a graph in which every pair of distinct vertices is connected by a unique
edge. Golomb [9] proved that a complete graph Kn is graceful if and only if n ≤ 4. The cases n = 1
and n = 2 are trivial and also follow by Theorem 3. Thus, it remains to analyze K3 and K4.

Theorem 5. Alice wins on K3 and Bob on K4, no matter who starts.

The next class of graphs considered in this work are the cycles. A cycle graph Cn, with n ≥ 3,
is a connected simple graph such that all of its vertices can be arranged in a cyclic sequence
(v0, v1, . . . , vn−1) such that two vertices are adjacent if and only if they are consecutive in the
sequence. It is known [15] that Cn is graceful if and only if n ≡ 0, 3 (mod 4). Since Cn is not
graceful for any other values of n, it is immediate that Bob is the winner in those cases.

Theorem 6. Bob has a winning strategy for Cn, n ≥ 4, and Alice can only win on C3.

A caterpillar cat(k1, k2, . . . , ks) is a tree obtained from a path graph (v1, v2, . . . , vs), called spine,
by joining ki leaves to vi, for each i ∈ {1, . . . , s}. It is known that all caterpillars are graceful [15].
In this work, we prove the following result for caterpillars.

Theorem 7. Bob has a winning strategy for all caterpillars.

The next class of graphs considered in this work are the wheel graphs. A wheel Wn is a graph
formed by connecting a single vertex v0 to all vertices v1, v2, . . . , vn of a cycle Cn, n ≥ 3. It is
known that all wheels are graceful [6] and, in this work, we prove the following result about wheels.
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Theorem 8. When Bob is the first player, he has a winning strategy for all wheel graphs.

The prism Pr,s, s ≥ 2, is defined as the cartesian product Cr�Ps of a cycle of length r and a
path with s vertices. Many families of prisms are known to be graceful [7, 13].

Theorem 9. Bob has a winning strategy for all prisms Pr,s with r ≥ 8 and s ≥ 1.

A n-dimensional hypercube graph Qk, or just hypercube, is defined recursively in terms of the
cartesian product of two graphs as follows: (a) Q1 = K2; and (b) Qk = K2�Qk−1. It is known
that all hypercubes are graceful [14]. In this work, we prove the following result.

Theorem 10. Bob has a winning strategy for all hypercubes Qk, k ≥ 2.

4 Concluding Remarks

In this work, we investigate the graceful game for many classic families of graphs and determine
that Bob has winning strategies for most of them as, for example, for all paths Pn with n ≥ 4; all
cycles Cn with n ≥ 4; all hypercubes Qk with k ≥ 2; all caterpillars; all complete bipartite graphs
Kp,q, p, q ≥ 2; and all prisms Pr,s with r ≥ 8 and s ≥ 1. For the investigated classes, Alice has
winning strategies for a few cases such as for paths P1 and P2, for K1,n−1 when she is the first
player, and on K3 and C3.

As future work, we intend to completely determine the result for wheels when Alice is the first
player and also the cases of prisms that remained open. Some other classes of graphs that are
interesting to consider, due to their structure, are powers of cycles and paths.
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Abstract

The Poison Game is a two-player combinatorial game, on a finite directed graph, where
players, a robber and a cop, sequentially choose a successor of the vertex previously chosen
by the other player. In this game, the cop poisons each vertex that he chooses, which means
that the robber cannot choose a vertex previously chosen by the cop. If the robber moves first,
Duchet and Meyniel (1993) show that he wins the game if and only if the directed graph has
a kernel. In this paper, we study a generalization of the ‘Poison game’ in which n cop-robbers
pairs, each of them identified by a color, simultaneously play a poison game on a finite n−edge
colored directed graph D. We show that D has a kernel by monochromatic paths when all the
players who move first win the game, but the converse is not true.

1 Introduction

The ‘Cops and Robbers Game’ is a combinatorial game in which a cop tries to capture a robber
when they sequentially choose vertices along a finite graph; the cop wins the game when he occupies
the same vertex where the robber stands (Fromme, 1984). The ‘Poison Game’ is a variation of the
cops and robbers game, introduced by (Duchet and Meyniel, 1993), where the cop and the robber
sequentially choose a vertex on a finite directed graph. It is a game of complete knowledge since the
graph is common knowledge and each player observes the vertex chosen by the other player. The
‘Poison Game’ proceeds as follows: the robber chooses first, and the cop chooses second by selecting
a successor vertex of the vertex chosen by the robber. In this ‘Cops and Robbers’ variation, the
cop has the ability to poison every vertex that he chooses, which means that the robber cannot
choose a vertex previously chosen by the cop. The cop wins the game when he captures the robber,
i.e., in a situation where the robber cannot choose a non-poisoned vertex. Duchet and Meyniel
(1993) demonstrate that the robber (or the player who moves first) wins the game if and only if
the digraph where they move has a kernel, introduced in Von Neumann and Morgenstern (2007)
as a solution concept.

This paper presents a generalization for the ‘Poison Game,’ the Colorful Poison Game,’ consid-
ering that n cop-robber pairs (Ri, Ci) play a poison game on a directed graph whose set of arrows
is partitioned into n disjoint sets, and each set is identified with a color i ∈ {1, 2, . . . , n}. Hence, we
say that an arrow is i-colored when it belongs to the set of arrows identified with color i. Also, we
consider that each pair (Ri, Ci) is identified by color i. In this generalization, cops-robbers pairs
simultaneously play a poison game in the n− colored digraph, with the restriction that they only
can move on arrows identified with their color. In other words, a player only can choose a vertex if
it is the final vertex of an arrow identified with his color. Cops poison the vertices that they choose
with his color, i.e., the robber with the same color cannot choose such vertices in later stages. We
assume that robbers are immune to the poison of cops with a different color, and many players of
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different colors can stand in the same vertex. The cops win the game if no robber can choose a
non-poisoned vertex. We investigate if results from the classical ‘Poison Game’ hold for this game.

In the classical ‘Poison Game,’ whenever the digraph has a kernel, choosing a vertex in the
kernel represents a winning strategy for the robber since the kernel is a set of independent and
absorbent vertices. In other words, there are no arrows between vertices in the kernel, and there is
a directed path from all vertices outside the kernel to some vertex in this set Duchet and Meyniel
(1993). So, it is necessary to establish what is a “kernel” for n-colored digraphs since we consider
that n cop-robber pairs simultaneously interact in a n colored digraph. To generalize the notion
of a kernel for colored graphs, we start by introducing the meaning of a monochromatic path.
A monochromatic path is a path whose arrows are colored by the same color. Hence, the kernel
by monochromatic paths generalizes the notion of a kernel for colored digraphs Galeana-Sánchez
(1996); Sands et al. (1982) since it is a set of vertices that are independent and absorbent by
monochromatic paths. We demonstrate that a kernel by monochromatic paths exists if the agents
who move first (the robbers) win the game. However, the existence of a kernel by monochromatic
paths does not guarantee the victory of the robbers by choosing a vertex in this set.

2 Basic elements

Let P be the set of players with cardinality 2n. We consider a partition {R,C} of P , where
R = {R1, R2, . . . , Rn} and C = {C1, C2, . . . , Cn}. We say that Ci is the opponent of Ri, and
viceversa, for all i = 1, 2, . . . , n.

Consider D = (V (D), F (D)) a finite digraph, where V (D) is the set of vertices and F (D) is
the set of arrows. Form now on, D refers to a digraph without multiple arrows (different arrows
with the same extremes) and loops (arrows that start and finish in the same vertex). A generic
vertex in V (D) is denoted by x, and a generic arrow is a pair (x, y) in V (D) × V (D). Since D is
a directed graph, we recall that (x, y) 6= (y, x). The set of all successors of a vertex x is ∆+

D(x) =
{y ∈ V (D)|xy ∈ F (D)}, and the set of all predecessors of x is ∆−D(x) = {y ∈ V (D)|yx ∈ F (D)}.

Let N = {1, 2, . . . , n} be a set of n different colors; and we assume that each pair (Ri, Ci) is
associated to color i. We say that D is an n-edge colored directed graph if there exists a partition
F = {F1, F2, . . . , Fn} of the arrows’ set F (D), where each set Fi is identified with color i. We say
that an arrow that belongs to Fi is i-colored.

For vertices x, y ∈ V (D), we say that y is an i-successor of x if and only if (x, y) ∈ Fi. A
directed monochromatic path, or simply a monochromatic path, of color i is a succession of vertices
{x0, x1, . . . , xk} such that (xi, xi+1) ∈ Fi for all i = 0, 1, . . . k − 1. We say that a monochromatic
path {x0, x1, . . . , xk} has length k. A subset K ⊆ V (D) is a kernel by monochromatic paths
(KMP) if and only if i) (Independence property) there is no monochromatic path from x to y, for
all x, y ∈ K; and ii) (Absorbency property) there exists a monochromatic path from z to some
element of K, for all z ∈ V (D) \ K.

3 The colorful Poison Game

In our Poison game generalization, we consider that players in P choose a vertex on a finite n-edge
colored directed graph D. The colorful Poison game proceeds as follows.

During the first step, all robbers in R simultaneously choose a vertex of D. In the next step, all
cops in C simultaneously choose and poison an i-successor of the vertex chosen by his opponent.
We allow many cops and robbers to choose the same vertex, which means that different cops can
poison a vertex.
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The game continues iteratively. As in the classical ‘Poison game,’ Ri cannot choose a vertex
previously chosen by its opponent Ci, but we assume that Ri is immune to the poison of Cj , for all
j 6= i. In other words, Ri can choose the same vertex that Cj chooses or poisons, for all j 6= i. Each
robber Ri chooses a non-poisoned i-successor of the vertex chosen by Ci. Each cop Ci chooses and
poisons an i-successor of the vertex chosen by his opponent Ri. Cops can choose any vertex even
if it is a poisoned vertex.

A player wins the game when his opponent cannot choose a vertex successor because all succes-
sors are poisoned or there are no successors. The colorful poison game “finishes” when no player
can choose a successor. However, as in the classical ‘Poison Game,’ it is possible that players
infinitely choose a successor of the vertex previously chosen by his opponent. If this happen for a
pair (Ri, Ci), we say that the Ri wins the game.

4 Results

Duchet and Meyniel (1993) demonstrate that a robber wins the game if and only if the game is
played on a directed graph with a kernel. In the Colorful Poison game, the existence of a KMP does
not guarantee that robbers win the game, even though such concept is the natural generalization
of the kernel concept for colored graphs, as the following example illustrates.

Example 1. Consider R = {R1, R2} and C = {C1, C2}. We identify (R1, C1) with red, and
(R2, C2) with blue. We consider that the colorful Poison Game is played on the directed graph D,
that we show in Figure 1. Note that K = {1, 3} is a KMP of the directed graph D.

1 2 3

Figure 1: Poison game with 2 pairs of players.

Consider that the Colorful Poison game unfolds as follows. During the first step, R1 chooses
the vertex 1, while R2 chooses the vertex 3; i.e., both robbers choose a vertex that belongs to K.
In the second step, we observe that C2 cannot choose a successor vertex of 3, which means that
R2 wins. However, vertex 2 is a red-successor of 1, and C1 can choose it. Since vertex 2 has no
red-successors, the game finishes and R1 losses the game.

Remark 2. In monochromatic directed graphs, the robber can escape from the cop since any poi-
soned vertex has a successor in the kernel that the robber can choose. By Example 1, vertices in a
KMP do not guarantee winning strategies for all robbers since an alternating path can connect
its vertices.1

Remark 2 establishes a necessary and sufficient condition to guarantee that vertices in a KMP
induce a winning strategy for all robbers.

Theorem 3. Let D be an n−edge colored directed graph D and let K be a KMP of D. All robbers
win the game by choosing any vertex in K if and only if ∆D(x)+ = ∅ for all x ∈ K.

Proof. Consider that robbers win the game by choosing any y ∈ K. We proceed by contradiction,
i.e., we assume that ∆+

D(x) 6= ∅ for some x ∈ K. This means that x has an i-successor y /∈ K
that is absorbed by some x′ ∈ K \ {x} through a monochromatic path {y = x0, x1, . . . , xk = x′} of
color j 6= i. Note that Ri looses the game by choosing x because {x, y, x1} generates an alternating

1An alternating path is a path where any two adjacent edges have a different color.
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path, which contradicts the fact that all robbers win the game by choosing a vertex in K. Finally,
choosing a vertex x ∈ K induces a winning strategy for each robber in R since no cop can choose
a successor of x. Therefore, all robbers win the game when they choose a vertex in K.

Although a KMP does not guarantee a winning strategy for robbers, the colored directed graph
has a KMP when all robbers win the game. Note that a set of vertices that generate a winning
strategy for all robbers is not necessarily a kernel by monochromatic paths. For example, in a
graph that is the union of monochromatic directed cycles of length four induce a winning strategy
for all robbers. Thus, the proof of our main result basis on building a KMP from the set of vertices
that guarantees a winning strategy for any robber.

Theorem 4. Consider a colorful Poison game played on an n-edge colored directed graph D. If
robbers win the game, then D has a kernel by monochromatic paths.

Proof. If all robbers win the game, there exists a non-empty subset V of V (D) such that cops do
not capture robbers when they choose vertices in V .

We know that vertices with no successors guarantee a winning strategy for all robbers; even

more, such vertices belong to a KMP, if it does exist (see Theorem 3). Let V
0

= {x ∈ V |∆+
D(x) = ∅}

the set of all vertices in V that have no successors, which can be empty or not. In this document,

we discuss the case where V
0 6= ∅.

Now, consider V
0+

=
{
x ∈ V \ V 0|there exists a monochromatic path from x to y ∈ V

0
}

. In

words, V
0+

is the set of all vertices absorbed by any vertex in V
0+

.

Claim 5. Let V
1

= V \
(
V

0 ∪ V
0+
)

. The set V
0 ∪ V

1
is KMP of D.

By definition, there are no paths from any vertex x ∈ V
1

to some vertex y ∈ V
0
. Moreover,

vertices in V
0

have no successors. Therefore, V
0 ∪ V

1
satisfies the property of independence.

Also, by construction, there exists a monochromatic path from any vertex in V to some vertex

in V
0 ∪ V 1

. We need to prove the existence of a monochromatic path from any vertex in V (D) \ V
to some vertex in V

0 ∪ V 1
. Consider x1 ∈ V (D) \ V , i.e., x does not induce a winning strategy for

some Ri ∈ R. Then, Ci chooses and poisons an i successor x2 of x1, and the game finishes.

Note that vertex x2 can belong to V
0

or not. In the last case, we can generate an infinite path

which contradicts the fact that D is finite. Therefore, V
0 ∪ V

1
is a KMP.
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Abstract

The enumeration of subsets of vertices satisfying a given property in a graph can have
two objectives, finding an exact algorithm to solve an NP-hard problem and also getting a
combinatorial bound on the number of such objects in a graph. The Connected Dominating
Set problem has been extensively studied, in the enumeration setting we ask to output all
inclusion-wise minimal connected dominating sets. In this paper, we consider the class of chordal
bipartite graphs and prove that any such graph has at most O∗ (1.7990n) different minimal
connected dominating sets, and that they can be enumerated in such time.

1 Introduction and definitions

The design of exact exponential algorithms in order to solve NP-hard problems gave rise to a
deep study of enumeration algorithms [3]. It has also the perk of giving combinatorial bounds
on the number of objects. Minimal Connected Dominating Sets Enumeration have recently seen
some improvements in general graphs [5], and also in various graph classes [4], but there is still
a gap between lower bounds and upper bounds, most notably in the general case where the best
known algorithm runs in time O∗

(
2(1−ε)n

)
with ε = 10−50 while the best published lower bound

is Ω (1.4422n). Bipartite graphs have no better algorithm than the one for general graphs, and it
might be interesting to improve the enumeration for this class of graphs. With this goal in mind,
trying to improve the result on a class with more structure could be a good starting point, so we
describe an algorithm for the class of chordal bipartite graphs, which are not chordal in general, so
the best previously known algorithm was the one for general graphs [5], and not the algorithm for
chordal graphs running in time O∗ (1.7159n) [4].

We start with some definitions and notations. Let G = (X,Y,E) be a bipartite graph and
W ⊆ V a subset of the vertices of G. We will denote by G[W ] the subgraph of G induced by
W . Given vertex v ∈ V , we will denote by N(x) the open neighbourhood of x and N [x] its
closed neighbourhood. Moreover, we denote by NW (x) the open neighbourhood of x in G[W ].
By extension, we will use N(W ) as the union of the neighbourhoods of vertices of W , N(W ) =⋃

w∈W N(w), we will also use N [W ] defined analogously. For two vertices u, v ∈W , we will denote
by u ∼W v the fact that u, v are connected in G[W ]. An edge xy ∈ E is called bisimplicial if
G[N(x) ∪N(y)] is a complete bipartite graph. A graph G = (V,E) is a chordal bipartite graph if it
is bipartite and weakly-chordal. This means that every induced cycle of a chordal bipartite graph
is exactly of length 4. The name chordal bipartite could be misleading as it is not the intersection
between chordal and bipartite graphs, as such a class would contain only forests. A set of vertices

∗This work is supported by the French National Research Agency, ANR project GraphEn (ANR-15-CE40-0009).
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S ⊆ V is a dominating set if N [S] = V . It is a connected set if G[S] is a connected graph. A set
S of elements is called minimal or inclusion-wise minimal for a property Π if S satisfies Π and no
strict subset of S satisfies Π.

Proposition 1 (See [2] for example). A bipartite graph G = (V,E) is chordal bipartite if and only
if it has a perfect edge-without-vertex elimination ordering, meaning there is an order on the edges
e1, · · · , e|E| such that ∀i ∈ {1, · · · , |E|}, ei is bisimplicial for the graph G = (V,E −{e1, · · · , ei−1}).

In particular, any chordal bipartite graph has a bisimplicial edge if it has an edge, and such a
bisimplicial edge can be found in polynomial time [1]. The point of this paper is to describe an
algorithm that, given a chordal bipartite graph, enumerates every set of vertices that is minimal
for the property of being both a connected set and a dominating set.

2 Algorithm

2.1 The algorithm

The algorithm consists in enumerating every subset of the smaller of both independent sets of the
chordal bipartite graph. And then complete it with vertices of the other independent set using a
branching algorithm based on the property that a chordal bipartite graph has a bisimplicial edge.

Algorithm 1: MCDS

Input : G = (X,Y,E) assuming without loss of generality that |Y | ≤ |X|.
Output: Every Minimal Connected Dominating Set of G.
Enumerate every subset Y ′ of Y , discard each Y ′ such that N(Y ′) 6= X. For each
remaining Y ′, launch the subroutine MCDSsub(G,X ∪ Y, Y ′).

Algorithm 2: MCDSsub

Input : G,O, S where G = (X,Y,E) is a chordal bipartite graph, O,S ∈ X ∪ Y .
Output: Some Minimal Connected Dominating Sets S′ of G such that S′ − S ⊆ O ∩X.
If G[O] is edgeless, return S iff it is a minimal connected dominating set of G.
Now, G[O] is chordal bipartite and it has an edge, so it has a bisimplicial edge xy ∈ X × Y .
The algorithm is then a set of cases, and we always apply the first case possible.

1. If dG[O](y) ≥ 2 then return MCDSsub(G,O −NO(y), S ∪ {x}) and MCDSsub(G,O − {x}, S)

2. If y /∈ N(S) then return MCDSsub(G,O − {x}, S ∪ {x})
3. If y /∈ S then return MCDSsub(G,O − {y}, S)

4. If ∃y′ ∈ S ∩NO(x)− {y} such that y ∼S y′, then return MCDSsub(G,O − {y}, S)

5. If S ∩NO(x)− {y} = ∅ then return MCDSsub(G,O − {y}, S)

6. Otherwise return MCDSsub(G,O − {x}, S ∪ {x})

2.2 Correctness proof

We are going to prove that if the input is G,O, S where G = (X,Y,E) is a chordal bipartite graph,
O and S are two sets of vertices satisfying the property:

∀x ∈ X ∩O,
(
∃y ∈ N(x) ∩ S −O ⇒ ∃y′ ∈ N(x) ∩O ∩ S s.t. y ∼S y′

)

∨
(
NO(x) ∩ S = ∅ ∧ ∀y, y′ ∈ N(x) ∩ S −O, y ∼S y′

)
, (+)
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then the output of MCDSsub is every Minimal Connected Dominating Set S′ of G such that
S′ − S ⊆ O ∩X and S′ − S is an inclusion-wise minimal set for the property:

O ∩ Y ⊆ N(S′) ∧ ∀y, y′ ∈ O ∩ Y ∩ S, y ∼S′ y
′. (∗)

First, we give some intuition behind the previous statement. The set O corresponds to the set
of vertices that we still consider, so in X the vertices for which we still have to decide if we put it in
the connected dominating set or not, in Y the vertices that are not in O are vertices we voluntarily
took out of it, after making sure they can not change the decision. To this extent, the property (+)
describes the fact that for each vertex x in X ∩O, either each of its neighbours that was taken out
of O was useless because a different neighbour of x is already in the same connected component
induced by S and still in O, or x can not connect two vertices of different connected components
induced by S. We ask for this property for the input to ensure that if a vertex x in O can be taken
in S′ to connect two components of G[S], then x sees both those components through vertices in
O, so that we consider them.

The property (∗) only corresponds to the fact that we only consider O, and so that the extension
of S into S′ is a set that is minimal for both domination and connectivity only for the vertices in
O, without considering the vertices not in O.

To show this statement, it is quite straightforward to see that property (+) is maintained in all
the cases, since it could only be violated in the cases 3,4,5, and the definition of the property (+)
fits the different cases. So we have to prove that the output is the one claimed.

If G[O] has no edges, then the output is correct, since the only one possible is S′ = S, otherwise
it can not be minimal for (∗).

To prove the case 1, we observe that any set of vertices containing x and an other vertex x′ of
NO(y) can not be minimal for property (∗) since NO(x) ⊆ NO(x′) and property (+) which ensures
that considering vertices of O ∩ Y is sufficient for the connectivity of vertices in O. For the case
2, x is the only possible vertex in O so that y ∈ N(S′), so there is no choice but to put x in S′.
In the case 3, y is in N(S) but not in S, so this vertex satisfies every condition of property (∗)
already. The case 4 is also straightforward: every extension in O ∩X of S connecting y′ to every
other vertex of Y ∩O ∩S also connects y to every vertex of Y ∩O ∩S. For the case 5, y is already
in N(S) and the only neighbour of y in O, x, can not connect y to any vertex of O ∩ Y ∩ S, so the
fact that y belongs to O does not change the set of sets of vertices satisfying the property (∗).
Lemma 2. For every call to MCDSsub , for every y ∈ G, if dG[O](y) ≥ 2 then y ∈ O.

Proof. Every vertex is in O in the first call, then a vertex y ∈ Y can be taken out of O only in
cases 3, 4, 5, in which dG[O](y) = 1, and we never add any vertex to O.

In order to prove case 6, we prove the following Lemma:

Lemma 3. If yx is an edge such that NO(y) = {x}, y ∈ S and for every y′ ∈ S ∩NO(x)− {y}, y′
and y do not belong to the same connected component in G[S] and S ∩NO(x)−{y} 6= ∅ then every
extension of S into S′ using vertices of O ∩X such that S′ is a minimal connected dominating set
of G contains the vertex x.

Proof. Let yx be an edge such that NO(y) = x, y ∈ S and for every y′ ∈ S ∩NO(x)− {y}, y′ and
y do not belong to the same connected component in G[S] and S ∩NO(x)− {y} 6= ∅.

Let’s assume that there exists an extension S′ of S into a minimal connected dominating set
such that S′ − S ⊆ X ∩O − {x}.

Let y′ ∈ S∩NO(x)−{y}. We know there exists a path in S′ from y′ to y, let’s call y1x2y3x4 · · · yp
an induced path in S′ such that y1 = y and yp = y′. Since y and y′ are not in the same connected
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component in G[S] and NO(y) = x, p ≥ 5. So xy1x2y3 · · · yp is a cycle of length at least 6 in G, so
it is not an induced cycle. Since G is chordal bipartite and there is no edge between any xi and yj
unless |i− j| = 1, x is adjacent to every yi. S′ ∩ Y = S ∩ Y , so for every i, yi ∈ S ∩N(x).

Let z be the last vertex on this path such that uk and y are in the same connected component in
G[S], z ∈ Y because S′ ∩Y = S ∩Y , thus z = yk for some k. We have then xk+1 /∈ S, so xk+1 ∈ O,
so |NO(yk)| ≥ 2. This gives us both the facts that yk ∈ O by Lemma 2 and yk 6= y. We can conclude
with yk ∈ S ∩NO(x)−{y} , which contradicts the fact that for every y′ ∈ S ∩NO(x)−{y}, y′ and
y do not belong to the same connected component in G[S].

One can then easily see that MCDS returns every Minimal Connected Dominating Set of a
chordal bipartite graph G.

2.3 Running-time Analysis

MCDSsub is a branching algorithm, we will use the measure |X ∩O| to analyse its complexity.
There is only one case where there is branching, where in one branch the measure decreases by
1 and in the other one it decreases by at least 2. All other cases are reduction rules where the
measure is non-increasing, and the cases where the measure is constant are used a polynomially
bounded number of time as the size of O decreases by at least 1 each time and is at most n. So
MCDSsub runs in time O∗

(
1.6181|X|

)
.

MCDS launches MCDSsub at most 2|Y | times. So it runs in time O∗
(
2|Y |1.6181|X|

)
. Since

|Y | ≤ n
2 , the running time of MCDS is O∗ (1.7990n) which is then also a combinatorial upper

bound on the number of minimal connected dominating sets in a chordal bipartite graph.

3 Conclusion

The best known lower bound on the time complexity of such algorithm is Ω (1.4422n) [6], an
interesting question would be to tighten the gap between this lower bound and our upper bound.
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Abstract

We study a continuous facility location problem on a graph where all edges have unit length
and where the facilities may also be positioned in the interior of the edges. The goal is to
position as many facilities as possible subject to the condition that any two facilities have at
least distance δ from each other.

We investigate the complexity of this problem in terms of the rational parameter δ. The
problem is polynomially solvable, if the numerator of δ is 1 or 2, while all other cases turn out
to be NP-hard.

1 Introduction

A large part of the facility location literature deals with desirable facilities that people like to
have nearby, such as service centers, police departments, fire stations, and warehouses. How-
ever, there also are facilities that are undesirable and obnoxious, such as nuclear reactors, garbage
dumps, chemical plants, military installations, and high security penal institutions. A standard
goal in location theory is to spread out such obnoxious facilities and to avoid their accumulation
and concentration in a small region; see for instance Erkut & Neuman [5] and Cappanera [2] for
comprehensive surveys on this topic.

In this paper, we investigate the location of obnoxious facilities on a graph. Formally, let G =
(V,E) be an undirected connected graph, where every edge is rectifiable and has unit length. Let
P (G) denote the continuum set of points on all the edges and vertices. For two points p, q ∈ P (G),
we denote by d(p, q) the length of a shortest path connecting p and q in the graph. A subset
S ⊂ P (G) is said to be δ-dispersed for some positive real number δ, if any two points p, q ∈ S
with p 6= q are at distance d(p, q) ≥ δ from each other. Our goal is to compute for a given graph
G = (V,E) and a given positive real number δ a maximum cardinality subset S ⊂ P (G) that is
δ-dispersed. Such a set S is called an optimal δ-dispersed set, and |S| is called the δ-dispersion
number δ-Disp(G).

Our results.

We provide a complete picture of the complexity of computing the δ-dispersion number for con-
nected graphs G = (V,E) and positive rational numbers δ.

• If δ = 1/b for some integer b, then the δ-dispersion number of G can be written down without
really looking at the structure of the graph: If G is a tree then δ-Disp(G) = b|E|+ 1, and if
G is not a tree then δ-Disp(G) = b|E|.
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• If δ = 2/b for some integer b, then δ-Disp(G) can be computed in polynomial time. The
algorithm uses the Edmonds-Gallai decomposition of G and reformulates the problem as a
submodular optimization problem.

• If δ = a/b for integers a and b with a ≥ 3 and gcd(a, b) = 1, then the computation of
δ-Disp(G) is an NP-hard problem.

2 Notation and technical preliminaries

All graphs in this paper are undirected and connected, and all edges have unit length. Throughout
the paper we use the word vertex in the graph-theoretic sense, and we use the word point to denote
the elements of the geometric structure P (G). For a graph G = (V,E) and a subset V ′ ⊆ V , we
denote by G[V ′] the subgraph induced by V ′. For an integer c ≥ 1, the c-subdivision of G is the
graph that results from G by subdividing every edge in E by c− 1 new vertices into c new edges.

For an edge e = {u, v} and a real number λ with 0 ≤ λ ≤ 1, we denote by p(u, v, λ) the point
on e that has distance λ from vertex u. Note that p(u, v, 0) = u and p(u, v, 1) = v, and note that
point p(u, v, λ) coincides with point p(v, u, 1− λ); hence we will sometimes assume without loss of
generality that λ ≤ 1/2.

3 Results

Lemma 1. Let G be a graph, let c ≥ 1 be an integer, and let G′ be the c-subdivision of G. Then
for every δ > 0, the δ-dispersed sets in G are in one-to-one correspondence with the (c · δ)-dispersed
sets in G′. In particular, δ-Disp(G) = (c · δ)-Disp(G′).

Lemma 1 has many useful consequences, as for instance the following:

Lemma 2. Let δ > 0 and let c ≥ 1 be an integer.

• If the problem of computing the δ-dispersion number is NP-hard, then also the problem of
computing the (c · δ)-dispersion number is NP-hard.

• If the problem of computing the (c · δ)-dispersion number is polynomially solvable, then also
the problem of computing the δ-dispersion number is polynomially solvable.

For integers ` and k, the rational number `/k is called k-simple. A set S ⊆ P (G) is k-simple,
if for every point p(u, v, λ) in S the number λ is k-simple.

Lemma 3. Let δ = a/b with integers a and b, and let G = (V,E) be a graph. Then there exists an
optimal δ-dispersed set S∗ that is 2b-simple.

From Lemma 3, we obtain an NP-certificate for computing the δ-dispersion number of a given
graph.

By a reduction from Independent Set in Cubic Graphs, we show that computing the δ-dispersion
number is NP-hard for δ = a/b, gcd(a, b) = 1 and a ≥ 3. Our arguments do not work for the cases
with a = 1 and a = 2, as our gadgets and our arguments break down at various places.

Theorem 4. Let a and b be positive integers with gcd(a, b) = 1 and odd a ≥ 3. Then it is
NP-complete to compute the (a/b)-dispersion number of a graph G.
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The polynomial time result for δ = 2

The following theorem goes back to Edmonds [4] and Gallai [6, 7]; see also Lovász & Plummer [9].

Theorem 5. (Edmonds-Gallai structure theorem) Let G = (V,E) be a graph. The following
decomposition of V into three sets X,Y, Z can be computed in polynomial time.

X = {v ∈ V | there exists a maximum matching that misses v}
Y = {v ∈ V | v /∈ X and v is adjacent to some vertex in X}
Z = V − (X ∪ Y )

The Edmonds-Gallai decomposition has the following properties:

• Set X is the union of the odd-sized components of G− Y ; every such odd-sized component is
factor-critical. Set Z is the union of the even-sized components of G− Y .

• Every maximum matching in G induces a perfect matching on every (even-sized) component
of Z and a near-perfect matching on every (odd-sized) component of X. Furthermore, the
matching matches the vertices in Y to vertices that belong to |Y | different components of
X.

We further subdivide the set X in the Edmonds-Gallai decomposition into two parts: Set X1

contains the vertices of X that belong to components of size 1, and set X≥3 contains the vertices
that belong to (odd-sized) components of size at least 3. The vicinity vic(v) of a vertex v ∈ V
consists of vertex v itself and of the midpoints of all edges incident to v.

Lemma 6. There exists an optimal 2-dispersed set S∗ in canonical form (with underlying edge set
E∗) that additionally satisfies the following three properties.

P1. In every component of X≥3, the set E∗ induces a near-perfect matching.

P2. For every vertex y ∈ Y , the set vic(y) ∩ S∗ is either empty or consists of the
midpoint of some edge between X and Y .

P3. In every component of Z, the set E∗ induces a perfect matching.

Theorem 7. The 2-dispersion number of a graph G can be computed in polynomial time.

The polynomially solvable cases

Theorem 7 and Lemma 2 together imply that for every rational number δ = a/b with numerator
a ≤ 2, the δ-dispersion number of a graph can be computed in polynomial time. We now present
some results that provide additional structural insights into these cases. The cases where the
numerator is a = 1 are structurally trivial, and the value of the corresponding δ-dispersion number
can be written down with the sole knowledge of |V | and |E|.

Lemma 8. Let δ = 1/b for some integer b, and let G = (V,E) be a connected graph.

• If G is a tree then δ-Disp(G) = b|E|+ 1.

• If G is not a tree then δ-Disp(G) = b|E|.
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The following lemma derives an explicit (and very simple) connection between the 2-dispersion
number and the (2/b)-dispersion number (with odd denominator b) of a graph. The lemma also
implies directly that for every odd b, the computation of (2/b)-dispersion numbers is polynomial
time equivalent to the computation of 2-dispersion numbers.

Lemma 9. Let G = (V,E) be a graph, let z ≥ 1 be an integer, and let δ = 2/(2z + 1). Then the
dispersion numbers satisfy δ-Disp(G) = 2-Disp(G) + z|E|.
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Abstract

A spanning circuit in a graph G is defined as a closed trail visiting each vertex of G. A
compatible spanning circuit in an edge-colored graph refers to a spanning circuit in which each
pair of edges traversed consecutively along the spanning circuit have distinct colors. As two
extreme cases, the existence of compatible Hamilton cycles and compatible Eulerian circuits in
edge-colored graphs has been studied extensively. In recent results the existence of compatible
spanning circuits visiting each vertex v at least b(d(v) − 1)/2c times in edge-colored graphs
satisfying Ore-type conditions has been proved. In this presentation, we show several results
on the existence of compatible spanning circuits visiting each vertex at least a specified number
of times in edge-colored Fan-type graphs. We will also present a sufficient condition for the
existence of such compatible spanning circuits in edge-colored 2(k + 1)-edge-connected graphs,
as well as some sufficient conditions for the asymptotical existence of compatible spanning
circuits in edge-colored random graphs.

1 Introduction

In this presentation we consider only finite undirected graphs without loops or multiple edges. For
terminology and notations not defined here, we refer the reader to Bondy and Murty [4].

Let G be a graph. We use V (G) and E(G) to denote the set of vertices and edges of G,
respectively. For a vertex v of G, denote by E(v) the set of edges of G incident to v, and d(v) =
|E(v)| the degree of v in G. In particular, δ(G) denotes the minimum degree of G. For two vertices
u, v of G, a (u, v)-path of G refers to a path of G connecting u and v, and the distance between u
and v in G, denoted by dist(u, v), is defined as the length of a shortest (u, v)-path of G.

A spanning circuit in a graph G is defined as a closed trail that visits each vertex of G. A
Hamilton cycle of G can be regarded as a spanning circuit that visits each vertex of G exactly once;
and an Eulerian circuit of G can be regarded as a spanning circuit that traverses each edge of G. It
is not difficult to see that a spanning circuit can be considered as a relaxation between a Hamilton
cycle and an Eulerian circuit. A graph is said to be Hamiltonian if it contains a Hamilton cycle,
and Eulerian if it admits an Eulerian circuit. It is well-known that determining whether a graph
is Hamiltonian is NP-complete, and many sufficient conditions for the existence of Hamilton cycles
have been found. In particular, Fan [6] proved that if a 2-connected graph G on n ≥ 3 vertices
satisfies max{d(u), d(v)} ≥ n/2 for every pair of vertices u, v of G with dist(u, v) = 2, then G is
Hamiltonian. A graph G on n vertices is called a Fan-type graph if max{d(u), d(v)} ≥ n/2 + c
for every pair of vertices u, v of G with dist(u, v) = 2, where c is some fixed constant. There is
also a well-known characterization of Eulerian graphs, i.e. a connected graph G is Eulerian if and
only if the degree of each vertex of G is even (see [4]). Fleury further obtained a polynomial-time
algorithm to find an Eulerian circuit in an arbitrary Eulerian graph (see [4]). A spanning Eulerian
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subgraph of a graph G refers to an Eulerian spanning subgraph of G. Clearly, each spanning circuit
of a graph G corresponds to a spanning Eulerian subgraph of G. A graph is said to be supereulerian
if it contains a spanning Eulerian subgraph. Pulleyblank [13] proved that determining whether a
graph is supereulerian is NP-complete (even for planar graphs).

An edge-coloring of a graph G is defined as a mapping c : E(G) → N, where N is the set of
natural numbers. An edge-colored graph refers to a graph with a fixed edge-coloring. A compatible
spanning circuit in an edge-colored graph is defined as a spanning circuit in which each pair of edges
traversed consecutively along the spanning circuit have distinct colors. An edge-colored graph is
said to be properly colored if each pair of adjacent edges of the graph have distinct colors. Thus,
a compatible Hamilton cycle is also properly colored. However, a compatible spanning circuit
is not necessarily properly colored. Compatible spanning circuits are of interest in graph theory
applications, for example, in genetic and molecular biology [12], in the design of printed circuit and
wiring boards [14], and in channel assignment in wireless networks [1].

Let G be an edge-colored graph. Denote by C(G) the set of colors appearing on the edges
of G, and di(v) the cardinality of the set {e ∈ E(v) : c(e) = i} for a vertex v ∈ V (G) and
a color i ∈ C(G). For a vertex v of G, we define the maximum monochromatic degree of v as
∆mon(v) = max{di(v) : i ∈ C(G)}.

As two extreme cases of compatible spanning circuits, the existence of compatible Hamilton
cycles and compatible Eulerian circuits in edge-colored graphs has been studied extensively. For
more details on the existence of compatible Hamilton cycles, we refer the reader to [10] and some
related references cited in [10]. For more details on the existence of compatible Eulerian circuits,
we refer the reader to [2, 9].

Recently, Guo et al. [8] considered the existence of more general compatible spanning circuits
in edge-colored graphs for the first time, and proved some sufficient conditions for the existence
of compatible spanning circuits visiting each vertex v at least b(d(v)− 1)/2c times in edge-colored
graphs satisfying Ore-type conditions. The following problem was also presented in [8].

Problem 1 (Guo, Li, Li and Zhang [8]). Let G be an edge-colored 2-connected graph on n vertices
satisfying Fan’s condition (see [6]), i.e., max{d(u), d(v)} ≥ n/2 for every pair of vertices u, v of G
with dist(u, v) = 2. Under what conditions does G contain a compatible spanning circuit visiting
each vertex v at least b(d(v)− 1)/2c times?

In this presentation, we first demonstrate a sufficient condition for the existence of compatible
spanning circuits visiting each vertex v at least b(d(v)−3)/2c times in edge-colored Fan-type graphs,
as follows.

Theorem 1. Let G be an edge-colored 2-connected graph on n vertices with δ(G) ≥ 3 such that
max{d(u), d(v)} ≥ n/2 + 1 for every pair of vertices u, v of G with dist(u, v) = 2. If ∆mon(v) ≤
(d(v)− 3)/2 for each vertex v of G with d(v) ≥ 5, and ∆mon(v) = 1 otherwise, then G contains a
compatible spanning circuit visiting each vertex v at least b(d(v)− 3)/2c times.

We further prove a sufficient condition for the existence of compatible spanning circuits visiting
each vertex v at least b(d(v)− 1)/2c times in edge-colored Fan-type graphs, as follows.

Theorem 2. Let G be an edge-colored 4-connected graph on n vertices such that max{d(u), d(v)} ≥
n/2 + 2 for every pair of vertices u, v of G with dist(u, v) = 2. If ∆mon(v) ≤ (d(v) − 1)/2 for
each vertex v of G, then G contains a compatible spanning circuit visiting each vertex v at least
b(d(v)− 1)/2c times.
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Using the proof technique of Theorem 2, we prove a sufficient condition for the existence of
compatible spanning circuits visiting each vertex v at least specified number of times in edge-
colored 2(k + 1)-edge-connected graphs, as well as some sufficient conditions for the asymptotical
existence of compatible spanning circuits visiting each vertex v at least b(d(v)−1)/2c times in some
edge-colored random graphs, as follows.

Theorem 3. Let G be an edge-colored 2(k + 1)-edge-connected graph. If for each vertex v of G,
∆mon(v) ≤ r/2, where r = b(k − 1)(d(v) − 1)/kc, then G contains a compatible spanning circuit
visiting each vertex v at least br/2c times.

A random graph process G̃(n) = (G0, G1, . . . , Gm, . . .) on the vertex set Vn = {v1, v2, . . . , vn},
introduced by Bollobás and Frieze [3], is defined as a Markov process (a random process in which
the future is independent of the past and is only dependent on the present) in which Gm is a
graph with V (Gm) = Vn and |E(Gm)| = m. The initial graph G0 is an empty graph. For m ≥ 1,

the graph Gm is obtained from Gm−1 by choosing an edge e ∈
(
Vn
2

)
\ E(Gm−1) uniformly at

random (u.a.r. for short), where

(
Vn
2

)
denotes the set of all pairs of vertices of Vn, and putting

E(Gm) = E(Gm−1)∪{e}. We use G ∼ G̃(n) to denote a random graph constructed by the random
graph process G̃(n). In fact, the random graph Gm ∼ G̃(n) is distributed exactly as the graph Gn,m

(a random graph chosen uniformly from the set of all graphs with the vertex set Vn = {v1, v2, . . . , vn}
and exactly m edges) constructed by the original random graph process introduced by Erdős and
Rényi [5].

We say that a property P of a graph G on n vertices holds asymptotically almost surely (a.a.s.
for short) if the probability that P holds tends to 1 as n→∞.

Theorem 4. Let G be an edge-colored random graph constructed by the random graph process
G̃(n) with δ(G) ≥ 4. If ∆mon(v) ≤ (d(v) − 1)/2 for each vertex v of G, then G contains a.a.s. a
compatible spanning circuit visiting each vertex v at least b(d(v)− 1)/2c times.

Let d be a positive integer. A random d-dimensional geometric graph process G̃d(n, r) =
(Gd(n, r))0≤r<∞ on the vertex set Vn = {v1, v2, . . . , vn}, generalized from Gilbert’s definition [7], is
defined as a continuous process as r ranges from 0 to∞, in which Gd(n, r) is a random d-dimensional
geometric graph defined by placing u.a.r. all vertices of Vn in the d-dimensional unit square [0, 1]d,
and joining two vertices vi and vj whenever ‖vi − vj‖p ≤ r for a given real number 0 ≤ r < ∞,

where ‖ ·‖p denotes the standard `p norm for some fixed 1 < p ≤ ∞ (see [11]). We use G ∼ G̃d(n, r)
to denote a random d-dimensional geometric graph constructed by the random d-dimensional geo-
metric graph process G̃d(n, r). For more details on random geometric graph processes and related
applications, we refer the reader to [15].

Theorem 5. Let d be a positive integer, and G be an edge-colored 4-connected random d-dimensional
geometric graph constructed by the random d-dimensional geometric graph process G̃d(n, r). If
∆mon(v) ≤ (d(v) − 1)/2 for each vertex v of G, then G contains a.a.s. a compatible spanning
circuit visiting each vertex v at least b(d(v)− 1)/2c times.
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1 Introduction

Let G = (V,E) be a complete undirected graph with a vertex set V = {v1, . . . , vn} and the complete
edge set E. Let H =< G,S > be a hypergraph, where S is a set of clusters S1, . . . , Sm, Si ⊆ V
for i ∈ {1, . . . ,m}, such that the clusters in S are not necessarily disjoint. The Clustered Spanning
Tree by Trees problem, denoted by CSTT, is to decide whether there exists a spanning tree of G,
such that each cluster induces a subtree. The Clustered Spanning Tree by Paths problem, denoted
by CSTP, is to decide whether there exists a spanning tree of G, such that each cluster induces a
path.

In the CSTT problem, verifying whether a hypergraph has a feasible solution tree can be
performed in two manners. According to ([1], [2], [4] and summarized in [3]), a hypergraph H =<
G,S > has a feasible solution tree if and only if it satisfies the Helly property and its intersection
graph is chordal. A second approach is to use Algorithm ES, presented and proved in [5], which
finds a maximum spanning tree in a weighted graph which represents the hypergraph. In the
CSTP problem [6] introduced a polynomial time algorithm which constructs a tree where each
cluster spans a path, if one exists.

We use the intersection graph of H to see how an instance for either one of the problems may
be divided into smaller instances, when the intersection graph contains a cut-node, a cut-edge or a
separating-path, whose removal from the intersection graph breaks the connectivity of the graph.
We prove how the feasibility question of every connected component, created after the removal of
the cut-node, cut-edge or separating-path, may be used to decide whether the original hypergraph
has a feasible solution. This approach may be of great significance regarding the complexity of the
decision problems.

For the case when H do no have a feasible solution, we introduce the idea of a feasible removal
list and a feasible insertion list. A feasible removal (insertion) list contains a list of vertices and
clusters such that removing (inserting) those vertices from (into) the appropriate clusters create a
hypergraph with a feasible solution. The structure of the intersection graph may be further used to
construct feasible removal (insertion) list based on the corresponding feasible removal (insertion)
lists created for each one of the sub-problems corresponding to the different connected components,
created after removing a cut-node, cut-edge or separating-path from the intersection graph.

Throughout this paper, we assume that the intersection graph of H is connected. Otherwise,
a feasible solution tree of H can be constructed by properly adding edges between the feasible
solutions of each connected component, if they exist. When no feasible solution tree exists for this
case, the union of feasible removal (insertion) lists of the different connected components creates a
feasible removal (inserted) list for the given hypergraph.

A possible motivation for the CSTT and CSTP problems is presented in [7], from the area of
communication networks. Given a complete graph where each vertex represents a customer, each
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edge represents a link between two customers, and there is a collection of not necessarily disjoint
clusters of vertices where each cluster represents a group of customers. The problem is to construct
a communication tree network in such a way that each cluster of vertices from the given collection
induces a subtree or a path in the solution tree. In this way, the network has the group broadcast
property and the group fault tolerance property.

2 Induced Graphs

2.1 Definitions

Definition 1. Given a graph G = (V,E) and a set of not necessarily disjoint clusters {Si1 , . . . , Sip}.
The intersection graph of {Si1, . . . , Sip}, denoted by Gint({Si1, . . . , Sip}), is defined to be a
graph whose set of nodes is {si1 , . . . , sip}, where sij corresponds to Sij , and an edge (sij , sik) exists
if Sij ∩ Sik 6= φ.

Definition 2. Let H =< G,S > be a hypergraph and let S ′ ⊂ S be a set of clusters. We define
the induced hypergraph H[S′] to be the hypergraph which is the complete graph on the vertex set
V (S′) =

⋃
Si∈S′ Si, and its clusters set is S ′.

Claim 3. Let H =< G,S > be a hypergraph, if Gint(S) is the intersection graph of H, then the
induced graph Gint(S)[

⋃
Si∈S′ Si] is the intersection graph of H[S ′] and therefore can be denoted as

Gint(S ′).

Definition 4. Let H =< G,S > be a hypergraph. RL is a removal list of H if RL is a list of
pairs: RL = {(v1, Si1), . . . , (vk, Sik)} with vj ∈ Sij , such that the removal of every vertex vj from
cluster Sij creates a new instance of the hypergraph. If the new hypergraph has a feasible solution
tree (for CSTT or CSTP problem) we say that RL is a feasible removal list of H.

Definition 5. Let H =< G,S > be a hypergraph. IL is an insertion list of H if IL is a list of
pairs: IL = {(v1, Si1), . . . , (vk, Sik)} with vj 6∈ Sij , such that adding every vertex vj to cluster Sij
creates a new instance of the hypergraph. If the new hypergraph has a feasible solution tree we say
that IL is a feasible insertion list of H.

Definition 6. Let H =< G,S > be a hypergraph, if L = {(v1, Si1), . . . , (vk, Sik)} is a removal
(insertion) list and S ′ ⊂ S a set of clusters, we define the induced removal (insertion) list
L[S′] to be {(v, Si)|(v, Si) ∈ L, v ∈ V (S ′), Si ∈ S ′}.

2.2 Basic Claims

Lemma 7. Let H =< G,S > be a hypergraph, if T is a feasible solution tree for CSTT (CSTP )
problem and X =

⋂
Si∈S′ Si for S ′ ⊂ S, then T [X] is a connected subtree (path).

Theorem 8. ([5]) Let H =< G,S > be a hypergraph with a connected intersection graph Gint(S)
and a feasible solution tree T . If Gint(S ′) is connected for S ′ ⊂ S, then T [V (S ′)] is a feasible
solution tree of H[S ′].

Lemma 9. Let H =< G,S > be a hypergraph, if L is a feasible removal (insertion) list of H, then
L[S ′] is a feasible removal (insertion) list of H[S ′] for every S ′ ⊂ S.

66



3 Breaking Results

Definition 10. A node v ∈ V is a cut-node of a connected graph G = (V,E) if the induced graph
of G on V \{v} is not connected.

Remark 11. Consider a cut-node s∗ of the intersection graph Gint(S), and let S1, . . . ,Sk be
the clusters sets which correspond to the connected components of Gint(S)\{s∗}. In this case
S1, . . . ,Sk, {S∗} are pairwise disjoint, V (S1), . . . , V (Sk) are pairwise disjoint, but (

⋃k
i=1 Si)∪{S∗} =

S and (
⋃k

i=1 V (Si)) ∪ S∗ = V .

Lemma 12. Given a hypergraph H =< G,S >, whose intersection graph contains a cut-node s∗,
and let S1, . . . ,Sk be the clusters sets which correspond to the connected components of Gint(S)\{s∗}.
If every H[(Si ∪{S∗}], i ∈ {1, . . . , k}, has a feasible solution tree, for the CSTT (CSTP ) problem,
then H has a feasible solution tree for the CSTT (CSTP ) problem.

Corollary 13. Given a hypergraph H =< G,S >, whose intersection graph contains a cut-node s∗,
and let S1, . . . ,Sk be the clusters sets which correspond to the connected components of Gint(S)\{s∗}.
If Li is a feasible removal (insertion) list of H[Si ∪ {S∗}], i ∈ {1, . . . , k}, then

⋃k
i=1 Li is a feasible

removal (insertion) list of H, for the CSTT (CSTP ) problem.

Definition 14. An edge (v1, v2) is a cut-edge of a connected graph G = (V,E) if removing the
edge (v1, v2) from G disconnects G into two connected components.

Remark 15. Consider a cut-edge (s1, s2) of the intersection graph Gint(S), and let S1,S2 be the
clusters sets which correspond to the two connected components of Gint(S)\{(s1, s2)}, with s1 ∈ S1
and s2 ∈ S2. In this case, S1,S2 are pairwise disjoint, but S1 ∪ S2 = S, V (S1) ∩ V (S2) = S1 ∩ S2
and V (S1) ∪ V (S2) = V .

Lemma 16. Given a hypergraph H =< G,S >, whose intersection graph contains a cut-edge
(s1, s2), and let S1, . . . ,Sk be the clusters sets which correspond to the connected components of
Gint(S)\{(s1, s2)}. If H[S1] and H[S2] have feasible solution trees for the CSTT (CSTP ) problem,
then H has a feasible solution tree for the CSTT (CSTP ) problem.

Corollary 17. Given a hypergraph H =< G,S >, whose intersection graph contains a cut-
edge (s1, s2), and let S1,S2 be the clusters sets which correspond to the connected components
of Gint(S)\{(s1, s2)}. If L1 is a feasible removal (insertion) list of H[(S1\{S1}) ∪ {S1 ∩ V (S1)}]
and L2 is a feasible removal (insertion) list of H[(S2\{S2}) ∪ {S2 ∩ V (S2)}], then L1 ∪ L2 is a
feasible removal (insertion) list of H, for the CSTT (CSTP ) problem.

Definition 18. A path P = (v1−· · ·− vk) is a separating-path of a connected graph G = (V,E)
if removing vertices v1, . . . , vk from G disconnects G into two connected components. However, G
remains connected if we do not remove one of the vertices v1 or vk.

Remark 19. Consider a separating-path P = (s1−· · ·−sk) of the intersection graph Gint(S), and let
Sa,Sb be the clusters sets which correspond to the two connected components of Gint(S)\{s1, . . . , sk}.
Since Gint(S) remains connected if we do not remove one of the vertices s1 or sk, there is at least
one edge connecting s1 to Sa, at least one edge connecting s1 to Sb and similarly for sk. Note that
Sa,Sb are disjoint and Sa ∪ Sb ∪ {S1, . . . , Sk} = S.

Lemma 20. Given a hypergraph H =< G,S >, whose intersection graph contains a separating-
path P = (s1 − · · · − sk) and let Sa,Sb be the clusters sets which correspond to the connected
components of Gint(S)\{s1, . . . , sk}. If H[Sa ∪ {S1, . . . , Sk}] and H[Sb ∪ {S1, . . . , Sk}] have feasible
solution trees for the CSTT problem, then IL = {(v∗, Si)|3 ≤ i ≤ k} for a vertex v∗ ∈ S1 ∩ S2, is
a feasible insertion list of H for the CSTT problem.
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Corollary 21. Given a hypergraph H =< G,S >, whose intersection graph contains a separating-
path P = (v1 − · · · − vk) and let Sa,Sb be the clusters sets which correspond to the connected
components of Gint(S)\{s1, . . . , sk}. If ILa is a feasible insertion list of H[Sa ∪ {S1, . . . , Sk}] and
ILb is a feasible insertion list of H[Sb∪{S1, . . . , Sk}] for the CSTT problem, then ILa∪ ILb∪ ILp,
where ILp = {(v∗, Si)|3 ≤ i ≤ k} for a vertex v∗ ∈ S1 ∩ S2, is a feasible insertion list of H for the
CSTT problem.

Lemma 22. Given a hypergraph H =< G,S >, whose intersection graph contains a separating-
path with k = 2 (P = (s1−s2)) and let Sa,Sb be the clusters sets which correspond to the connected
components of Gint(S)\{s1, s2}. If La is a feasible removal (insertion) list of H[Sa ∪ {S1, S2}] and
Lb is a feasible removal list of H[Sb ∪ {S1, S2}] for the CSTT problem, then La ∪ Lb is a feasible
removal (insertion) list of H for the CSTT problem.

Remark 23. Consider a hypergraph H =< G,S >, whose intersection graph contains a separating-
path with k = 2 and let Sa,Sb be the clusters sets which correspond to the connected components of
Gint(S)\{s1, s2}. There exists such hypergraph where H[Sa ∪ {S1, S2}] and H[Sb ∪ {S1, S2}] have
feasible solution trees for the CSTP problem, but H has no feasible solution tree for the CSTP
problem.

Lemma 24. Given a hypergraph H =< G,S >, whose intersection graph contains a separating-
path with k = 2 and let Sa,Sb be the clusters sets which correspond to the connected components
of Gint(S)\{s1, s2}. If H[Sa ∪ {S1, S2}] and H[Sb ∪ {S1, S2}] have feasible solution trees for the
CSTP problem, and at least two of the next sets: V (Sa) ∩ (S1 ∩ S2) or V (Sb) ∩ (S1 ∩ S2) or
(S1 ∩ S2)\(V (Sa) ∪ V (Sb)) are empty, then H has a feasible solution tree for the CSTP problem.

Corollary 25. Given a hypergraph H =< G,S >, whose intersection graph contains a separating-
path with k = 2 and let Sa,Sb be the clusters sets which correspond to the connected components of
Gint(S)\{s1, s2}. If RLa is a feasible removal list of H[Sa∪{S1, S2}] and RLb is a feasible removal
list of H[Sb ∪ {S1, S2})] for the CSTP problem, then RLa ∪ RLb ∪ RL, where RL = {(v, Si)|v ∈
S1 ∩ S2, Si ∈ (Sa ∪ Sb)}, is a feasible removal list of H for the CSTP problem.
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Abstract

A dynamic kernelisation for d-hitting set with parameter k named lazy sunflower is
presented that achieves an update time O(d2 d! kd) for insertion and O(d3 d! kd) for
deletions which significantly improves the best bounds known so far.

1 Introduction

A graph algorithm A takes a graph G as instance and computes an output π(G) for a given
task like determining the (number of) connected components, coloring vertices with ` colors, or
finding a vertex cover of size at most k . In a dynamic environment graphs may change as new
edge connections between vertices show up or existing ones are lost. Then we have to handle
a sequence G0, G1, . . . of graphs over a fixed set of vertices V and would like to generate the
outputs π(Gi) efficiently [HK01, HdLT01].

Instead of computing the result each time from scratch one is interested in a data structure
to represent the versions Gi in such a way that π(Gi) can be obtained much faster. Now the
update time for a single edge insertion or deletion becomes important, too, to measure the
overall speedup obtained. If Tπ(m) denotes the time to solve the problem for a static graph G
with m edges then starting with the edge-free graph and performing m insertions to generate
G a dynamic graph algorithm A could be applied to compute π(G). Thus a single update of
A cannot be cheaper than Tπ(m)/m and the goal is to come to this bound as close as possible.
Several basic graph problems in P have been investigated in this respect and appropriate
algorithms have been presented.

For NP -hard graph problems like vertex cover fixed parameter algorithms have been de-
signed to obtain fast solutions even for large graphs if the additional parameter is bounded (for
more details see [Ca15]). The main technique is kernelisation. It reduces a large graph to a
much smaller subgraph that is equivalent with respect to the problem considered.

Can these ideas be combined to solve parameterized problems in a dynamic setting more
efficiently than computing a new kernel after each update? Few papers have considered this
question so far. [IO14] has investigated k -vertex cover and achieved an update time O(k2) under
the constraint that each Gi actually possesses a vertex cover of size k . [AMW17] develops a
dynamization of the Buss kernel and achieves an update time O(k) in the worst case and O(1)
amortized and does not need the condition on the maximal size of a vertex cover.

d-hitting set, given a hypergraph with edge size bounded by some d ∈ N , does there exist
a set V ′ of at most k vertices such that each edge has a nonempty intersection with V ′ , is a
natural generalization of vertex cover. [AMW17] constructs a dynamic kernel for d-hitting set
based on a complicated notion of good sets that achieves an update time (d!)d kO(d2) and kernel
size d! (k+ 1)d . This paper exploits the sunflower property [ER60] more directly and constructs
a dynamic kernelisation of size d! kd with O(d2 d! kd) time for edge insertion and O(d3 d! kd)
time for edge deletion.
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2 Definitions

Vertex cover and hitting set are well known NP -hard graph problems that belong to the
complexity class FPT (fixed-parameter tractable).

Definition 1 (FPT). A parameterized language L ⊆ Σ∗×N is in FPT if there is a computable
function f : N→ N and an algorithm A that decides membership in L for inputs (I, k) in time
bounded by f(k) · poly(|(I)|).

Vertex cover is probably the most prominent example for a problem in FPT. It can be
considered as the special case of d-hitting set for d = 2.

Definition 2 (Parameterized d-Hitting Set). For d ∈ N instances of d-hitting set are tupels
(G, k), where G = (V,E) is a hypergraph with edge size bounded by d and k ∈ N is an additional
parameter. A hitting set is a subset V ′ ⊆ V of vertices such that V ′ ∩ e 6= ∅ for all e ∈ E .
One has to decide whether G possesses a hitting set of size k .

A standard technique to put a language into FPT is kernelisation,

Definition 3 (Kernelisation). A kernelisation for a parameterized language L is a mapping,
where instances (I, k) are reduced to smaller instances (I ′, k′) called kernel with |I ′| ≤ f(k) for
some computable function f and k′ ≤ k such that (I, k) ∈ L ⇐⇒ (I ′, k′) ∈ L. In addition,
this mapping should be efficiently computable with respect to the size of I .

Kernelisation can be used in particular for graph problems. We want to extend this technique
to a dynamic environment.

Definition 4 (Dynamic Graph Algorithm). A dynamic graph algorithm A receives as input a
sequence X = G, x1, x2,. . . , where G = (V,E) is a hypergraph with vertex set V of size n and
edge set E , and the xi are operations on edges, either insert(e) or delete(e) for some e ⊆ V .
The input sequence defines a sequence of hypergraphs G0, G1, G2, . . . where G0 = G and Gi+1 is
derived from Gi by applying operation xi+1 if the relevant edge e is not present, resp. is present
in Gi .
A solves a graph problem π dynamically if it maintains a data structure Y = Y0, Y1, Y2, . . .,

where Yi is supposed to relate to Gi such that π(Gi) can be determined using Yi .
Let Tin denote the (worst case) time of A to update Yi from Yi−1 if xi is an insert, and

Tdel for a delete assuming that one starts with an edge free graph. Furthermore, Tout denotes
the time to compute π(Gi) from π(Gi−1), Yi−1 and Yi .

A dynamic kernelisation uses as data structure Y a sequence of kernels that have to be
updated according to the edge operations xi . From a kernel Yi for Gi a solution π(Gi) can
then be derived using a fast static FPT-algorithm for the given problem. Since the size of the
kernel matters one would like to keep it small.

The notion of a sunflower has shown to be helpful for solving the hitting set problem.

Definition 5 (Sunflower). A subset {e1, . . . , ep} of edges of a hypergraph G is called a sunflower
S if there exists a subset C ⊆ V of vertices called the core of S such that ei ∩ ej = C for all
ei, ej with i 6= j . The sets ei are called the petals of S and their number p is the size of S .

Note that the core can be empty and thus a sunflower may consist of p pairwise disjoint
edges. When looking for a hitting set of size k in a graph containing a sunflower of size k + 1
one has to select at least one vertex of the core. Thus one can reduce large sunflowers with
nonempty core to its core without destroying any minimal (with respect to inclusion) hitting set
of size at most k . If the graph contains a sunflower of size k+ 1 with empty core then a hitting
set of size k cannot exist. Erdös and Rado have proven a bound on the existence of sunflowers.
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Lemma 1 ([ER60]). Let s(d, p) denote the minimal number m of edges such that every hy-
pergraph with m edges where each edge is of size at most d has a sunflower with more than p
petals. Then s(d, p) ≤ d! pd + 1.

3 Constructing Dynamic Kernels

For ordinary graphs (d = 2) a sunflower of size larger than k with nonempty core is a vertex v
of degree at least k+ 1 together with its incident edges. Thus for a vertex cover of size k such a
vertex has to be part of the cover. In a static situation one fixes v for the vertex cover, removes
all incident edges and then can select up to k − 1 additional vertices to cover the remaining
graph. If all large degree vertices are handled this way the remaining graph is either obviously
too large to allow a small vertex cover or has a kernel of size bounded by O(k2).

In a dynamic environment where edges may be added or deleted things become more compli-
cated since removing large degree vertices with their edges may lead to high update times. The
nodes of a graph are split into three subsets which are COVER: nodes that have to be selected,
KERNEL: the nodes in the kernel, and NOC: nodes that are useless for a cover. A dynamic
data structure has to represent these relations and should allow a fast implementation of changes.

NOC KERNEL COVER NOC KERNEL COVER

a

b c

d

e v

g h
a

b

v

c

d g

e

h

Figure 1: an update of the kernel for vertex cover after inserting edge {c, e}

In [AMW17] it has been shown that one can achieve a worst case update time O(k) keeping
the kernel size bounded by O(k2). Amortized the update time can even be kept constant. In
the same paper a generalisation to hitting sets has been considered.

Theorem 1 ( [AMW17]). There exists a dynamic kernelisation for d-hitting set with size
bound k that achieves update time (d!)d kO(d2) and kernel size d! (k + 1)d .

This result can be improved as follows:

Theorem 2. d-hitting set with size bound k has a dynamic kernelisation with Tin ≤ O(d2 d! kd)
and Tdel ≤ O(d3 d! kd) and kernel size g(d, k) ≤ d! kd + 1.

We give a short illustration of the main ideas. Given a sequence of hypergraphs Gi that is
generated by inserting and deleting edges starting from an edge free graph the data structure
stores all current edges until the sunflower bound g(d, k) is reached. Every time the data
structure has that many edges we search for a sunflower of size (at least) k + 1, which can be
done in time O(d2 d! kd). The sunflower is reduced to its core C , that means all petals are
removed and a new (virtual) hyperedge C is added. If C is empty we increase a special counter
by 1 to keep track of the number of sunflowers with empty core. Over time several new such
hyperedges may be generated that have to be carefully distinguished. This complicates the data
structure, but we have to skip details in this extended abstract.

Deleting edges that are physically in the data structure can be done directly. If an edge e
is part of a sunflower S that has been shrunk to its core and deleting e reduces the size of S
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below k+ 1 all remaining petals are added back and the core is removed (see Fig. 2). However,
such updates may lead to a recursive movement of cores of sunflowers. Since the size of the cores
in such a recursion decreases at least by 1 in each step the depth is bounded by d . This gives
an extra factor d in the update time for deletion.

4 Conclusion

An obvious question is whether the update time for hitting set can further be reduced. For vertex
cover we have also considered more sophisticated kernels like the one in [CKJ01] of linear size.
Our investigations have shown that a good update time for such a kernel is quite unlikely. For
the Buss kernel, however, it is open whether constant worst case update time can be achieved.

e2

e3e1

C1

e2

e3
suspend C1

to delete e1

Figure 2: for k = 2 deletion of an edge e1 destroys the 3-petal sunflower generated by e1, e2, e3 ,
which is represented by its core C1 after a sunflower reduction. To delete the sunflower first the
core is removed, then the edge e1 , and finally the two remaining edges are inserted back
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Abstract

For a graph G with no isolated vertices, a dominating set D of G is called a semipaired
dominating set of G if D can be partitioned into 2-element subsets such that the vertices in each
2-element set are at distance at most two. The minimum cardinality of a semipaired dominating
set of G is called the semipaired domination number of G, and is denoted by γpr2(G). The
Minimum Semipaired Domination problem is to find a semipaired dominating set of G of
cardinality γpr2(G). Given a graph G and a positive integer k, the Semipaired Domination
Decision problem is to decide whether G has a semipaired dominating set of cardinality at
most k. In this paper, we show that the Semipaired Domination Decision problem is NP-
complete even for split graphs, an important subclass of chordal graphs. On the positive side,
we propose a linear-time algorithm to solve the Minimum Semipaired Domination problem
in trees.

keywords: Domination, Semipaired domination, Chordal graphs, NP-completeness, Graph algo-
rithms.

1 Introduction

Let G = (V,E) be a graph. For a vertex v ∈ V , let NG(v) = {u ∈ V |uv ∈ E} and NG[v] =
NG(v) ∪ {v} denote the open neighborhood and the closed neighborhood of v, respectively. For two
distinct vertices u, v ∈ V , the distance distG(u, v) between u and v is the length of a shortest
path between u and v. A vertex u dominates v if either u = v or u is adjacent to v. A set
D ⊆ V is called a dominating set of G = (V,E) if each v ∈ V is dominated by a vertex in D,
that is, |NG[v] ∩ D| ≥ 1 for all v ∈ V . The domination number of a graph G, denoted by γ(G),
is the minimum cardinality of a dominating set of G. For a graph G, the Minimum Domination
problem is to find a dominating set of cardinality γ(G). The notion of domination and its variations
in graphs has been studied a great deal both from a theoretical as well as algorithmic point of view,
see [5, 6]; a rough estimate says that it occurs in more than 6000 papers to date. A dominating set
D is called a paired dominating set if G[D] contains a perfect matching. For a graph G with no
isolated vertices, the Minimum paired domination problem is to find a paired dominating set of
G of minimum cardinality. The concept of paired domination was introduced by Haynes and Slater
in [4].

A relaxed form of paired domination called semipaired domination was introduced by Haynes
and Henning in [1] and studied further in [7, 2, 3]. A set S of vertices in a graph G with no isolated
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vertices is a semipaired dominating set, abbreviated a semi-PD-set, of G if S is a dominating set
of G and S can be partitioned into 2-element subsets such that the vertices in each 2-element set
are at distance at most 2. In other words, the vertices in the dominating set S can be partitioned
into 2-element subsets such that if {u, v} is a 2-set, then the distance between u and v is either 1
or 2. We say that u and v are semipaired. The semipaired domination number of G, denoted by
γpr2(G), is the minimum cardinality of a semi-PD-set of G. Since every paired dominating set is a
semi-PD-set, and since every semi-PD-set is a dominating set, we have the following observation.

Observation 1.1. ([1]) For every isolate-free graph G, γ(G) ≤ γpr2(G) ≤ γpr(G).

By Observation 1.1, the semipaired domination number is squeezed between two fundamental
domination parameters, namely the domination number and the paired domination number. For
a graph G with no isolated vertices, the Minimum Semipaired Domination problem is to find a
semipaired dominating set of cardinality γpr2(G), and the Semipaired Domination Decision problem
is the decision version of the Minimum Semipaired Domination problem. In this paper, we
observe that there are graph classes where paired domination and semipaired domination problem
differs in complexity. We also show that the Semipaired Domination Decision problem is NP-
complete even for split graphs, a subclass of chordal graphs. On the positive side, we propose a
linear-time algorithm to compute a minimum cardinality semipared dominating set of trees.

2 Preliminaries

2.1 Notations

Let G = (V,E) be a graph. A set S ⊆ V is called an independent set of G if uv /∈ E for all
u, v ∈ S. A set K ⊆ V is called a clique of G if uv ∈ E for all u, v ∈ K. A graph G is said to
be a chordal graph if every cycle in G of length at least four has a chord, that is, an edge joining
two non-consecutive vertices of the cycle. A chordal graph G = (V,E) is a split graph if V can be
partitioned into two sets I and C such that C is a clique and I is an independent set. Let n and
m denote the number of vertices and number of edges of G, respectively. In this paper, we only
consider connected graphs with at least two vertices.

2.2 Complexity difference between paired domination and semipaired domina-
tion

In this section, we make an observation on complexity difference between paired domination and
semipaired domination. We show that the decision version of the Minimum paired domination
problem is NP-complete for GP4 graphs, but the Minimum Semipaired Domination problem is
easily solvable for GP4 graphs. The class of GP4 graphs was introduced by Henning and Pandey
in [8]. Below we recall the definition of GP4 graphs.

Definition 1 (GP4-graph). A graph G = (V,E) is called a GP4-graph if it can be obtained
from a general connected graph H = (VH , EH) where VH = {v1, v2, . . . , vnH}, by adding a path
of length 3 to every vertex of H. Formally, V = VH ∪ {wi, xi, yi, zi | 1 ≤ i ≤ nH } and E =
EH ∪ {viwi, wixi, xiyi, yizi | 1 ≤ i ≤ nH }.
Theorem 2. If G is a GP4-graph, then γpr2(G) = 2

5 |V (G)|.
Lemma 3. If G is a GP4-graph constructed from a graph H as in Definition 1, then H has a
paired dominating set of cardinality k, k ≤ nH if and only if G has a semi-PD-set of cardinality
2nH + k.
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Figure 1: An illustration to the construction of G′ from G in the proof of Theorem 5.

Since the decision version of the Minimum Paired Domination problem is known to be NP-
complete for general graphs [4], the following theorem follows directly from Lemma 3.

Theorem 4. The decision version of the Minimum Paired Domination problem is NP-complete
for GP4-graphs.

3 NP-completeness result for split graphs

Theorem 5. The Semipaired Domination Decision problem is NP-complete for split graphs.

Proof. Clearly, the Semipaired Domination Decision problem is in NP. To show the hardness,
we give a polynomial time reduction from the Domination Decision problem, which is well
known NP-complete problem. Given a non-trivial graph G = (V,E), where V = {vi | i ∈ [n]} and
E = {ej | j ∈ [m]}, we construct a split graph G′ = (VG′ , EG′) as follows:

Let Vk = {vki | 1 ≤ i ≤ n} and Uk = {uki | 1 ≤ i ≤ n} for k ∈ [2]. Now define VG′ =
V1∪V2∪U1∪U2, and EG′ = {uv | u, v ∈ V1∪U1, u 6= v}∪{v2i v1j , u2iu1j | 1 ≤ i ≤ n and vj ∈ NG[vi]}.
Note that the set A = V1∪U1 is a clique in G′ and the set B = V2∪U2 is an independent set in G′.
Since VG′ = A ∪B, the constructed graph G′ is a split graph. Fig. 1 illustrates the construction of
G′ from G.

Now, to complete the proof of the theorem, we only need to prove the following claim.

Claim 6. G has a dominating set of cardinality k if and only if G′ has a semi-PD-set of size
cardinality 2k.

4 Algorithm for trees

In this section, we present a linear-time algorithm to compute a minimum cardinality semipaired
dominating set in trees.

Let T = (V,E) be a tree, and β = (vn, vn−1, . . . , v1) be the BFS ordering of vertices of T starting
at a pendant vertex vn. Let α = (v1, v2, . . . , vn) be the reverse ordering of β. In our algorithm, we
process the vertices in the order they appear in α. Let p(vi) denote the parent of vertex vi. If vi is
the root vertex, we assume p(vi) = vi.

The idea behind our algorithm is the following. We start with an empty set D, an array L and
an array M . Initially L[vi] = 0 and M [vi] = 0 for all vi ∈ V . We process the vertices one by one
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in the order α = (v1, v2, . . . , vn). During each of the iterations, we update D, L and M suitably.
During the iterations, L[vi] = 0 if vi is not selected in D, L[vi] = 1 if vi is selected in D but not
semipaired, and L[vi] = 2 if vi is selected in D and semipaired. Also, M [vi] = k if vk need to be
semipaired with some vertex in NT [vi] \ D. At the end of the algorithm D becomes a minimum
cardinality semi-PD-set of the given tree T . At the ith iteration, we process the vertex vi. While
processing vi, we update D, L and M as follows.
Case 1: i 6= n, n− 1 and vi is not dominated by D.
Subcase 1.1: For every vr ∈ NT [p(vi)], M [vr] = 0.
Update D = D ∪ {p(vi)}, L[p(vi)] = 1 and M [p(vj)] = j, where vj = p(vi).
Subcase 1.2: For some vr ∈ NT [p(vi)], M [vr] 6= 0.
Let C = {vr ∈ NT [p(vi)] | M [w] 6= 0}. Let vk be the least index vertex in C and m[vk] = vs.
Update L[p(vi)] = L[vs] = 2, and D = D ∪ {p(vi)}.
Case 2: i ∈ {n, n− 1} and vi is not dominated by D.
Update L[vn−1] = L[vn] = 2, and D = D ∪ {vn−1, vn}.
Case 3: vi is dominated by D and M [vi] = 0.
No Update in D, L and M are made.
Case 4: vi is dominated by D and M [vi] = k 6= 0 (that is, vk need to be semipaired with some
vertex in NT [vi] \D).
Subcase 4.1: L[p(vi)] = 0.
Update L[p(vi)] = L[vk] = 2, M [vi] = 0 and D = D ∪ {p(vi)}.
Subcase 4.1: L[p(vi)] = 1.
This case will not arrive.
Subcase 4.3: L[p(vi)] = 2.
Update L[vi] = L[vk] = 2, M [vi] = 0 and D = D ∪ {vi}.
Theorem 7. The Minimum Semipaired Domination problem is linear-time solvable in trees.
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Abstract

We propose a methodology, based on machine learning and optimization, for selecting a solver
configuration for a given instance. First, we employ a set of solved instances and configurations
in order to learn a performance function of the solver. Secondly, we solve a mixed-integer
nonlinear program in order to find the best algorithmic configuration based on the performance
function.

1 Introduction

In this work we address the configuration of general-purpose Mathematical Programming (MP)
solvers. Most solvers have long lists of user-configurable parameters; tweaking them influences
how the available algorithmic components work and how they interact with each other, and it
can consequently have a significant impact on the quality of the obtained solution and/or on the
efficiency of the solution process. Good solvers have effective default parameter configurations,
carefully selected to provide “good” performances in most cases. Furthermore, solvers may embed
heuristics that try to automatically adapt the parameter configuration to the characteristics of
the instance at hand. However, default/automatic parameter configurations may still be highly
suboptimal with specific instances, which require a manual search for the best parameter values.
The motivation for this work lies in the fact that, due to the large amount of available parameters
[10], manual tuning is highly nontrivial and time-consuming. This setting is an instance of the
Algorithm Configuration Problem (ACP) [7].

Our approach for addressing the ACP on MP solvers is based on a two-fold process:

(i) in the Performance Map Learning Phase (PMLP), supervised Machine Learning (ML) tech-
niques [13] are used to automatically learn a performance function which maps some features
of the instance being solved, together with a given parameter configuration, into some measure
of solver efficiency and effectiveness;

(ii) the formal properties defining the ML methodology underlying the PMLP are translated
into MP terms; the resulting formulation, together with constraints encoding the compatibil-
ity of the configuration parameter values, is called the Configuration Space Search Problem
(CSSP), a Mixed-Integer Nonlinear Program (MINLP) which, for a given instance, finds the
configuration providing optimal performance w.r.t. the performance function.

The main novelty of our approach lies in the fact that we explicitly model and optimize the CSSP
using the mathematical description of the ML technique used to learn the performance function.
This is in contrast to most of the existing algorithmic configuration approaches, which instead
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employ heuristics such as experimental design methods [1], local searches [8], genetic algorithms
[2], evolutionary strategies [5] and other methods [3, 12].

We remark that, differently from many other approaches, we define the performance of the
target algorithm as a function of both features and controls. In this way, we account for the fact
that the best configuration of a solver may vary among instances belonging to the same class of
problems (“per-instance” ACP, see e.g. [3, 9]), whereas some literature works assume instead that
the solution to the ACP is invariant over instances pertaining to a given problem (for example,
[1, 8, 14]).

The idea of using the components of a ML predictor to define a MP formulation has been
already explored and a generalisation of this research can be found, say, in [11]. The proposed
approach is in fact suitable for many other applications, besides MP solvers [7], where the outcome
of executing some action (e.g., run a target algorithm) depends upon the features of the problem
instance and the possible action controls by the user (e.g., the parameters of the target algorithm).

2 The PMLP and the CSSP

Let A be the target algorithm, and:

• CA be the set of feasible configurations of A; we assume that (a) each configuration c is a
vector of binary and/or discrete values representing categorical and numerical parameters
and that (b) CA can be described by means of linear constraints;

• Π be the problem to be solved, consisting of an infinite set of instances, and Π′ ⊂ Π be the
(finite) set of instances used as the training set for the PMLP phase;

• FΠ be the set of features used to describe instances, encoded by vectors of continuous or
discrete/categorical values (in the latter case they are labelled by reals);

• pA : FΠ × CA −→ R be the performance function (evaluated using solver performance indi-
cators within a given time limit), which maps a pair (f, c) (instance feature, configuration)
to the outcome of an execution of A, typically in terms of the integrality gap reported by
the solver, i.e. the relative discrepancy between an optimal objective function bound and the
best feasible solution found so far (but other measures are possible).

2.1 Performance Map Learning Phase

In the PMLP phase we use a supervised ML predictor, e.g., Support Vector Regression (SVR), to
learn the coefficient vector θ̄ providing the parameters of a prediction model p̄A(·, ·, θ) : FΠ×CA → R
of the performance function pA(·, ·). The training set for the PMLP is

S =
{

(fi, ci, pA(fi, ci)) | i ∈ {1 . . . s}
}
⊆ FΠ′ × CA × R, (1)

where s = |S| and the training set labels pA(fi, ci) are computed on the training vectors (fi, ci).
Our training includes a phase for determining the hyperparameters of the ML methodology by
nested cross-validation [17]. We also assess the generalization error of the fully-trained predictor
configured with the best hyperparameter setting.
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2.2 Configuration Space Search Problem

For a given instance f and parameter vector θ, CSSP(f, θ) is the problem of finding the configuration
with best estimated performance p̄A(f, c, θ):

CSSP(f, θ) ≡ min
c∈CA

p̄A(f, c, θ) . (2)

The actual implementation of CSSP(f, θ) depends on the MP formulation selected to encode p̄A,
which may require auxiliary variables and constraints to define the properties of the ML predictor.

If p̄A yields an accurate estimate of pA, we expect the optimum c̄ of CSSP(f, θ) to be a good
approximation of the true optimal configuration c∗ for solving f . However, we remark that not
only CSSP(f, θ) can be hard to solve, it also needs to be solved quickly (otherwise one might as
well solve the instance f directly). Achieving a balance between PMLP accuracy and CSSP cost is
one of the challenges of this research.

3 Experimental setup

In this paper we report results where the ML predictor of choice was SVR [16]. Its advantages are:
(a) the PMLP for training an SVR can be formulated as a convex Quadratic Program (QP), which
can be solved efficiently; (b) even complicated and possibly nonlinear performance functions can
be learned by using the “kernel trick” [15], which reduces problematic nonlinear transformations of
feature vectors to the much simpler computation of inner products; (c) the solution of the PMLP
for SVR provides a closed-form algebraic expression of the performance map p̄A, which allows an
easier formulation of CSSP(f, θ).

instance bestFeasCD bestFeasCSSP optVal bestRelaxCD bestRelaxCSSP

i0001 0 0 1,193E+04 1,211E+04 1,202E+04
i0002 0 0 4,567E+03 4,791E+03 6,619E+06
i0003 0 0 1,155E+04 9,250E+06 1,285E+07
i0004 9,593E+03 0 1,117E+04 1,144E+04 1,140E+04
i0005 7,091E+03 0 8,960E+03 9,255E+03 9,322E+03
i0006 3,083E+03 3,135E+03 3,491E+03 3,609E+03 3,597E+03
i0007 6,921E+03 0 8,955E+03 9,060E+03 9,028E+03
i0008 0 0 1,539E+04 1,553E+04 1,552E+04
i0009 5,182E+03 0 8,778E+03 8,897E+03 8,894E+03
i0010 2,520E+03 0 7,721E+03 7,790E+03 1,209E+07
i0011 0 0 1,692E+04 1,705E+04 1,704E+04
i0012 0 0 5,691E+03 5,885E+03 5,984E+03
i0013 3,372E+03 0 3,372E+03 3,374E+03 9,527E+06
i0014 3,748E+03 0 3,832E+03 3,964E+03 1,061E+07
i0015 0 0 2,192E+03 2,449E+03 1,070E+07
i0016 2,377E+03 8,523E+02 2,382E+03 2,437E+03 2,423E+03
i0017 3,491E+03 0 3,781E+03 3,838E+03 4,809E+06
i0018 1,570E+02 0 6,084E+03 6,471E+03 6,465E+03
i0019 2,804E+03 0 4,055E+03 4,237E+03 4,402E+03
i0020 0 0 4,576E+03 4,646E+03 9,600E+06
i0021 0 0 4,245E+03 4,354E+03 1,343E+07

Table 1: lower and upper bounds (resp. “bestFeas” and “bestRelax”) obtained using CPLEX’s default configuration
and the CSSP solution (resp. “CD” and “CSSP”) to configure the solver

We used a Gaussian kernel during SVR training, which is the default choice in absence of any
other meaningful prior [6]. This choice makes the CSSP a MINLP with a nonconvex objective
function p̄A. More precisely, our CSSP is:

min
c∈CA

s∑

i=1

αi e
−γ‖(fi,ci)−(f̄ ,c)‖22 (3)
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where, for all i ≤ s, (fi, ci) belong to the training set, αi are the dual solutions of the SVR, γ is
the scaling parameter of the Gaussian kernel used in Eq. (3).

We tested our approach on 41 instances of the Hydro Unit Commitment problem [4]. Its
purpose is to find the scheduling of a pump-storage hydro power station maximizing the revenue
given by electricity selling. Each instance was encoded by 54 continuous features, representing
hourly electricity prices, hourly inflows, initial and target water level of the considered reservoir. We
configured 11 parameters of the IBM ILOG CPLEX MP solver [10]. Our preliminary computational
experiments use CPLEX’s default configuration and the CSSP solution to solve the instances.
Table 1 shows that, in a number of cases, the proposed approach is capable of providing stronger
relaxations than CPLEX’s default. However, it still fails to find good feasible solutions, which
yields overall larger integrality gaps than the solver’s default. In order to tackle this issue and
improve the general efficacy of the approach, we plan to test variants in the near future. We will
most importantly test different features for the instances, employ alternative performance metrics
for pA and conduct experiments with other techniques than SVR.
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Inductive Shapley values in cooperative
transportation games

Reinoud Joosten∗ & Eduardo Lalla-Ruiz

April 4, 2019

1 Problem and intuition

Applications of cooperative game theory to transportation problems may
suffer from a double curse of dimensionality. Firstly, finding several widely
used solutions to cooperative games constitutes a problem which is increas-
ingly hard to solve if the number of agents that cooperate increases. Sec-
ondly, prominent problems studied in transportation frameworks are travel-
ing salesman problems and vehicle routing problems, and these are known
to be NP -hard.

One of the most important single-valued solutions for cooperative games,
is the Shapley value. A value here solves the problem of how the worth of
the grand coalition, i.e., the benefits of all agents cooperating, should be
divided. One of the most unattractive properties of the Shapley value is
that it becomes increasingly hard to compute for games with increasing
numbers of players as mentioned. This problem is known to be NP -hard.

We consider appointing an outside agent to provide a fair distribution of
the gains of cooperation. We have already argued that CTPs (cooperative
transportation problems) consist of several NP -hard subproblems, so the
agent should be provided with ample computational means. Our motiva-
tional idea is that computation of a solution to the problem of dividing the
benefits of cooperation in a CTP may be subject to a time constraint. So,
the outside agent may not be possible to compute all primitives, i.e., the
worths of the coalitions, needed to compute the Shapley value.

We follow a H(art-&)M(as-Colell)-potential-based computation/approx-
imation approach. We determine the exact HM -potential whenever possible
and we approximate the HM -potential if it cannot be determined. We de-
fine an approximation, the inductive HM -potential, based on the true HM -
potentials for all coalitions with at most U members. The HM -potential of
∗Both authors: University of Twente, School of Behavioral, Management and

Social Sciences, IEBIS, POB 217, 7500 Enschede, The Netherlands. Email:
r.a.m.g.joosten@utwente.nl
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the grand coalition is approximated by using the true worth of the grand
coalition, which by assumption can always be computed, and the approxi-
mated potentials of all coalitions with one player missing.

In some cases, the inductive Shapley value is identical to well known
alternatives. If the restriction is quite loose the Shapley value and the in-
ductive Shapley value coincide. If the restriction is very tight, i.e., U = 0,
the inductive Shapley value and the egalitarian value coincide, and if it is
slightly less tight, i.e., U = 1, the former coincides with the CIS value
(center of the imputation set).

The inductive Shapley value satisfies effi ciency and the balanced contri-
butions property for all games. Furthermore, depending on diligent choices
regarding how to establish the approximated HM -potential, the inductive
Shapley value satisfies symmetry for all games. Symmetry and the balanced
contributions property are widely regarded as requirements of fairness. An-
other fairness aspect, social acceptability can be guaranteed only for sub-
classes of games. We introduce two new axioms of fairness, satisfied by the
inductive Shapley value by design, i.e., sensitive up to any cardinality U and
insensitive beyond any cardinality U .

2 Variations on Shapley values and potentials

A well known solution to cooperative games is the Shapley value Sh, for
every (N, v) ∈ G and every i ∈ N, given by

Shi(N, v) =
∑

S⊆N :i∈S

(|S| − 1)!(|N | − |S|)!
|N |! ∆v

i (S). (1)

The Shapley value is uniquely determined by effi ciency, symmetry, linearity
and the null-player property.

The HM -potential is a function attributing a real number to each game.
The vector of marginal contributions of each player to the HM -potential of
the grand coalition in a game coincides with the Shapley value. We may
present this potential and an associated value as a pair.

Definition 1 The HM-potential is the unique map P : G → R given by
P (N, v) = 0 for N = ∅, and for N 6= ∅∑

i∈N
[P (N, v)− P (N\{i}, v)] = v(N), for all (N, v) ∈ G.

The value associated to the HM-potential is the Shapley value Sh for all
(N, v) ∈ G, i ∈ N given by

Shi(N, v) = P (N, v)− P (N\{i}, v).
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Alternatively, the HM -potential is uniquely determined recursively by

P (M, v) =
v(M) +

∑
k∈N P (M\{k}, v)
|M | (2)

on every game (M,v) restricted to the subset M ⊆ N .

2.1 Inductive potentials and values

Let for given game (N, v) and let for given U ⊆ N : V U = {P (S, v)| 0 ≤
|S| ≤ U} and let {V u}|N |u=0 denote the collection of all such sets, and let

g : {V u}|N |u=0 → R|N |. Then, we define the inductive HM -potential (with
restriction U) PU : 2N → R in a rather general manner:

PU (S, v) = P (S, v) if |S| ≤ U ,
PU (S, v) =

∑
j∈S

gj(V
U ) if U < |S| ≤ |N | − 1, (3)

PU (N, v) =
v(N) +

∑
k∈N P

U (N\{k}, v))
|N | .

Note that if U = |N |, |N | − 1 all values of the inductive HM -potential
PU (S, v) are equal to the HM -potentials P (S, v), S ∈ 2N . For the more
challenging case that U ≤ |N |− 2, we approximate the HM -potential for all
S with |S| > U . For the final approximation namely PU (N, v), we turn back
to reality by using the truly computed worth of the grand coalition, but still
rely on the approximations of potentials for coalitions with one member less
than the grand coalition.

Remark 1 In order to avoid confusion we emphasize the following. The
inductive Shapley value IShU (N, v) is uniquely determined for each and
every game and for U = 0, 1, ..., |N | and g, so the set

{IShu(N, v)}|N |u=0

is uniquely determined. However, only one element out of this set is chosen
by the procedure and as the number U is not known in advance we have

ISh(N, v) = IShU (N, v) ∈ {IShu(N, v)}|N |u=0 .

3 The computational procedure

Let CTmax be the maximum computing time allowed, let tc denote the real-
time running computation time. Now, we proceed with a description of the
procedure in pseudo code.
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Step 0 Compute v(N), then

—P 0(∅, v) := 0,

— V 0 := {P 0(∅, v)},
—P 0(N\{i}, v) := 0 for all i ∈ N ;

—P 0(N, v) := v(N),

— ISh0i (N, v) := P 0(N, v)− P 0(N\{1}, v) for all i ∈ N ;

— ISh0(N, v) := (ISh01(N, v), ..., ISh
0
|N |(N, v));

—K := 1 and go to Step K.

Step K While tc < CTmax,

—Compute v(S) for all S ⊆ N , |S| = K,

—PK(S, v) :=
v(S)+

∑
j∈S P

K−1(S\{j},v}
|S| for all S ⊆ N , |S| = K;

— V K := V K−1 ∪ {PK(S, v)| S ⊆ N, |S| = K};
— g1i

(
V K
)

:= 1

(|N|−1K−1 )

∑
S:|S|=K,
i∈S

(PK(S, v)−PK(S\{k}, v) for i ∈ N ;

—PK(N\{i}, v) :=
∑
k∈N\{i} g

1
j

(
V K
)
for all i ∈ N ;

—PK(N, v) :=
v(N)+

∑
j∈N P

K(N\{j},v)
|N | ;

— IShKi := PK(N, v)− PK(N\{i}, v) for all i ∈ N ;

— IShK :=
(
IShK1 , ..., ISh

K
|N |

)
.

If tc = CTmax, then stop with ISh(N, v) = IShK−1(N, v).

Otherwise, if K = |N |, then stop with ISh(N, v) = Sh(N, v).

Otherwise, set K := K+1, ISh(N, v) := IShK(N, v), go to Step K.

The procedure stops in two cases with an inductive Shapley value ISh(N, v).
In one case the time constraint proved not binding, hence U = |N | and
ISh(N, v) = Sh(N, v). In the other case, the time constraint was binding
and U < |N | and ISh(N, v) = IShU (N, v). For the latter case, all informa-
tion is used for potentials and worths up of coalitions up to cardinality U ,
and due to the failure to complete the computations on time, information
available for larger coalitions is neglected with the exception of using the
information on the worth of the grand coalition.
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Combinatorial optimization in structural engineering: recent trends

and future needs
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Abstract

During the past decades optimization has received considerable attention in the literature of
structural engineering. Generally, the optimum design of a structural system can be defined as
seeking the best arrangement of structural elements that produces an economical final solution
while satisfying a set of design constraints stipulated by the standard design codes. In civil
engineering applications, typically, the optimum design of skeletal structures is carried out with
respect to a discrete list of available sections, resulting in a combinatorial sizing optimization
problem. In essence, development of optimization algorithms for handling such discrete opti-
mization problems is basically due to the fact that the speed of existing computers is not high
enough to facilitate evaluating every possible solution in a timely manner. Therefore, search
techniques capable of generating reasonable solutions without performing an exhaustive search
have become popular in the structural engineering applications.

Unquestionably, the majority of the contemporary approaches proposed for discrete sizing
optimization of skeletal structures belong to the class of metaheuristic techniques. Regarding the
popularity of metaheuristics in structural engineering applications, the present study strives to
survey the recently developed structural optimization metaheuristics and outlines the advantages
and shortcomings of these techniques as well as the future research needs in discrete sizing
optimization applications.

Keywords: Optimum design, Structural engineering, Combinatorial optimization, Metaheuristics
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1 Introduction

The Selection problem is widely studied in the computer science and optimization literature. Let
E = [n] be the set of base elements, with associated non-negative costs αi for each i ∈ E. Given
an integer p ∈ [n] we want to choose a subset A ⊆ E of size p that minimizes the cost

∑
i∈X αi.

The problem can be solved in O(n) time using a linear time algorithm for finding the p-th largest
element [1]. We denote by Sαp (E) an arbitrary instance of this problem and write A = Sαp (E) if A
is an optimal solution to the given instance of the selection problem.

In this paper we investigate a natural generalization of the Selection problem. For the element
set E = [n] we are given two cost vectors αi, βi ∈ R and parameters p, q ∈ N. We have to select
A,B ⊆ E both of size p that minimize the cost

∑
i∈A αi +

∑
j∈B βj such that the intersection

|A ∩ B| ≥ q. We denote an instance of this problem, the Recoverable Selection problem, by
RSα,βp,q (E) and if (A∗, B∗) is an optimal solution of this problem we write (A∗, B∗) = RSα,βp,q (E).
Kasperski and Zieliński [2] showed that this problem can be solved in O(qn2) time using a reduction
to a minimum cost flow problem.

Our Results We show in Section 2 that the Recoverable Selection problem can be solved
using a simple greedy algorithm. This is of special interest since for this problem no matroidal
structure is known that would directly imply such a result. In Section 3 we study the structure of
optimal solutions with respect to two parameters and obtain discrete-convexity and unimodality
results. Based on this detailed mathematical analysis we are able to obtain a linear time algorithm
using prune and search [5].

Recoverable Robust Optimization – an Application The concept of recoverable robust
optimization was introduced by Liebchen et al. [4]. The Recoverable Selection problem can
be used to solve the recoverable robust version of the classic Selection problem with interval
uncertainties [2]. In this case, instead of fixed costs for each element, we are given a scenario set
U and for each scenario s ∈ U the costs of element i ∈ E are denoted by csi ≥ 0 and setup costs
Ci. In the robust optimization literature the interval uncertainty representation is a popular choice
for defining scenario sets [3], which we denote by UI . For each i ∈ E we are given an interval
[ci, c̄i] of possible cost realizations. Then the scenario set with interval uncertainties is given by
UI =

∏
i∈E [ci, c̄i]. Then the Recoverable Robust Selection problem to be solved is

min
X⊆E : |X|=p

max
s∈UI

∑

i∈X
Ci + min

Y⊆E,|Y |=p
|Y \X|≤k

∑

i∈Y
csi .
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Kasperski and Zieliński [2] observed that this is equivalent to solving RSC,c̄p,p−k(E).

2 A Greedy Algorithm

Algorithm 1 is a, easy to implement, greedy algorithm for the Recoverable Selection problem.

Algorithm 1: Greedy algorithm with growing selection parameter.

1 A := ∅, B := ∅
2 for l := 1, . . . , p do
3 (a, b) := argmin{αi + βj : (i, j) ∈ E2, i ∈ E \A, j ∈ E \B,

|(A+ i) ∩ (B + j)| ≥ q − (p− l)}
4 A := A ∪ {a}

B := B ∪ {b}
5 return (A,B)

To obtain an efficient implementation and prove correctness, it is necessary to classify the
different cases in which the minimum in line 3 in each iteration of the loop in line 2 can occur:

α-greedy and β-greedy This is the case if we select a = argmin{αi : i ∈ E \ A} and b =
argmin{βj : j ∈ E \B}.

α-greedy and β-filling In this case we select a = argmin{αi : i ∈ E \ A}, and dependent on a
then b = argmin{βi : i ∈ E \B, i ∈ A ∪ {a}}. We call b the filling element of the step.

β-greedy and α-filling The symmetric case, i.e. b = argmin{βj : j ∈ E \ B}, and dependent on
b then a = argmin{αi : i ∈ E \A, i ∈ B ∪ {b}}. We call a the filling element.

(α+ β)-greedy The step a = b = argmin{αi + βi : i ∈ E \ (A ∪B)}.

Based on this case distinction we can implement Algorithm 1 in O(n log n) time using sorting
and priority queues. In summary we obtain the following result.

Theorem 1. The greedy algorithm (Algorithm 1) solves the Recoverable Selection problem
in O(n log n) time.

3 A Linear Time Algorithm

To achieve a linear running time we repeatedly use the fact that Sαp (E) can be calculated in O(n)
time. The main idea is to introduce parameters for different structural properties of solutions and
then perform prune and search for the optimal values of those parameters in a two stage approach.
Before these structural parameters can be introduced we perform a simple preprocessing, removing
trivial to select pairs of elements. This preprocessing procedure achieves that given an arbitrary
instance (E, p, q, α, β) it obtains an instance (E′, p′, q′, α, β) with the properties

• p′ ≤ p̂ ≤ p, • X ′ = Sαp̂ (E′), • Y ′ = Sβp̂ (E′), • E′ = X ′ ∪ Y ′, • X ′ ∩ Y ′ = ∅.

Prune and Search for the Intersection Size s in X

The main idea of the algorithm is to introduce a parameter s ∈ {0, 1, . . . , q}, where s = |X ∩A∩B|
(symmetrically, then q − s = |Y ∩A ∩B|). For every s ∈ {0, 1, . . . , q} let As1, B

s
1 ⊆ X be such that

|As1| = p − (q − s), |Bs
1| = s minimizing

∑
i∈As

1
αi +

∑
j∈Bs

1
βj and As1 ∩ Bs

1 = Bs
1 and As2, B

s
2 ⊆ Y
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Figure 1: Illustration of the sets involved in the search for s∗.

X
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Figure 2: Visualization of sets involved in the definition of h(r).

such that |Bs
2| = p − s, |As2| = q − s and Bs

2 ∩ As2 = As2 minimizing
∑

i∈As
2
αi +

∑
j∈Bs

2
βj . This

directly implies that (A,B) = (As1 ∪ As2, Bs
1 ∪ Bs

2) is a feasible solution to RSα,βp,q (E) with exactly
s elements of the intersection in X and q − s in Y . In addition we observe that there is an s such
that (As1 ∪As2, Bs

1 ∪Bs
2) is an optimal solution, which we denote by s∗.

We analyze the cost function with respect to this parameter s. For this purpose let

f(s) =
∑

i∈As
1∪As

2

αi +
∑

j∈Bs
1∪Bs

2

βj .

Our main structural result for f(s) is that f(s) is a discrete-convex function, i.e. 2f(s) ≤
f(s − 1) + f(s + 1) for all s ∈ {1, 2, . . . , q − 1}. A discrete function f is called unimodal if there
is some s′ such that for all s ≤ s′ it holds that f(s) is monotonically decreasing in s and for all
s ≥ s′ it holds that f(s) is monotonically increasing in s. A plateau of f is a sequence s1, s2, . . . , sl
with l > 1 such that f(s1) = f(s2) = · · · = f(sl). It is a well known result that a discrete-convex
function is unimodal and has at most one plateau at its minimum.

Based on this it is possible to efficiently check if s = s∗, s∗ > s or s∗ < s for any given s
by determining f(s + 1) and f(s − 1), which results in a fast prune and search for s∗, because
determining f(s− 1) and f(s+ 1) can be done in the same time as determining f(s) (see below).

Prune and Search for the Number of (α + β)-Greedy Steps

In this section we explain how to find sets As1, B
s
1 ⊆ X during the search for s∗ in O(∆s) time,

where ∆s is the current size of the search region. The case of finding As2, B
s
2 follows symmetrically.

Again, the main idea of the algorithm is to introduce a parameter r ∈ {0, 1, . . . , s}, that can be
loosely interpreted as the number of (α+β)-greedy steps performed. Based on r we define the sets
• Gr = Sp−q+s−rα (X), • F r = Ss−rβ (Gr), • Rr = Srα+β(X \Gr).

Here, it is important that for Rr if there are multiple elements with same sum α+ β we select
the one with smaller α value. If also this is the same (i.e. there are multiple elements with identical
costs) we use the same order as is used to select Gr with respect to α.

Observe that (Gr ∪ Rr, F r ∪ Rr) is a feasible solution for the sets (As1, B
s
1) (see Figure 2). We

denote the cost of this solution by

h(r) =
∑

i∈Gr∪Rr

αi +
∑

j∈F r∪Rr

βj .

It is easy to see that there is always an optimal solution of the form (Gr ∪ Rr, F r ∪ Rr) for
some correctly chosen r, which we denote by r∗. To find those solutions efficiently we first analyze
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Figure 3: Visualization of the functions f (left) and h (right).

properties of the function h(r) in terms of r, similarly as we did for f(s). For h(r) we show
unimodality, but observe that it is not discrete convex as it is the case for f(s) (see Figure 3 for a
comparison of the structure of f(s) and h(r)).

We show how to perform a prune and search for r∗ and the corresponding optimal solutions
As1, B

s
1. The basic idea is again similar as in the search for s∗. The major difference in this case is

that long plateaus can appear in h(r). This is why it does not suffice to just calculate the values
h(r − 1), h(r), h(r + 1), since if they are equal we cannot efficiently decide whether r∗ < r, r∗ > r
or r∗ = r. This is why instead of evaluating at r− 1 and r+ 1 in addition to the center point r the
evaluation is performed at the quarter points r/, r. to the left and right. The major complication
in this binary search are the cases where we have equality among the evaluation points. We can
handle this by proving additional properties about the plateaus of h(r). Using this, pruning either
happens because we know that all the elements in between two evaluation points build a plateau
or since the properties of unimodality imply that the minimum cannot lie in some regions.

To achieve the claimed running time of O(∆s), it is not feasible to select from the whole sets
X, Gr and X \Gr during the execution of the algorithm. We are able to handle this efficiently by
showing that certain sets of elements can be fixed and the selection can be performed on smaller
sets of candidate elements. Based on this we obtain our main result.

Theorem 2. The Recoverable Selection problem can be solved in O(n) time.
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1 Introduction

Since their introduction in the 1930s, the theory of matroids and submodular functions have become
an integral part of discrete optimization. This combinatorial stucture naturally arises in practical
settings, e.g., they generalize the notion of linear independence in vector spaces and the notion of
forests in graphs. Formally, a matroid ℳ is a pair (𝐸, ℐ), where 𝐸 is a finite set of resources and
ℐ is a family of subsets of 𝐸, called the independent sets. Set ℐ has the following three properties:

1. The empty set is an independent set: ∅ ∈ ℐ.

2. Set ℐ is closed under taking subsets: if 𝐼 ⊆ 𝐽 and 𝐽 ∈ ℐ, then 𝐼 ∈ ℐ.

3. Set ℐ has the exchange property : if 𝐼, 𝐽 ∈ ℐ and |𝐼| < |𝐽 |, then there exists an 𝑒 ∈ 𝐽 such
that 𝐼 ∪ {𝑒} ∈ ℐ.

A basis is an independent set that becomes dependent on adding any element of 𝐸 and the base
set ℬ contains all bases of (𝐸, ℐ). Given the base set ℬ, one can easily recover the original set ℐ.
Hence, a matroid ℳ can also be denoted as (𝐸,ℬ). For more details on matroids, we refer to [4].

The Model Given two matroids ℳ1 = (𝐸,ℬ1) and ℳ2 = (𝐸,ℬ2) on a common ground set 𝐸
with base sets ℬ1 and ℬ2, some integer 𝑘 ∈ N, and two cost functions 𝑐1, 𝑐2 : 𝐸 → R, we consider
the optimization problem to find a base 𝑋 ∈ ℬ1 and a base 𝑌 ∈ ℬ2 minimizing 𝑐1(𝑋) + 𝑐2(𝑌 )
subject to either a lower bound constraint |𝑋 ∩ 𝑌 | ≤ 𝑘, an upper bound constraint |𝑋 ∩ 𝑌 | ≥ 𝑘,
or an equality constraint |𝑋 ∩ 𝑌 | = 𝑘 on the size of the intersection of the two bases 𝑋 and 𝑌 .
Here, as usual, we write 𝑐1(𝑋) =

∑︀
𝑒∈𝑋 𝑐1(𝑒) and 𝑐2(𝑌 ) =

∑︀
𝑒∈𝑌 𝑐2(𝑒) to shorten notation. Let us

denote the following problem by (𝑃=𝑘).

min 𝑐1(𝑋) + 𝑐2(𝑌 )

s.t. 𝑋 ∈ ℬ1
𝑌 ∈ ℬ2
|𝑋 ∩ 𝑌 | = 𝑘

Accordingly, if constraint |𝑋 ∩ 𝑌 | = 𝑘 is replaced by upper bound constraint |𝑋 ∩ 𝑌 | ≤ 𝑘,
the problem is called (𝑃≤𝑘), and finally, if constraint |𝑋 ∩ 𝑌 | = 𝑘 is replaced by the lower bound
constraint |𝑋 ∩ 𝑌 | ≥ 𝑘, the problem is called (𝑃≥𝑘). Certainly, it only makes sense to consider
integers 𝑘 in the range between 0 and 𝐾 := min{rk(ℳ1), rk(ℳ2)}, where rk(ℳ𝑖) for 𝑖 ∈ {1, 2} is
the rank of matroid ℳ𝑖, i.e., the cardinality of each basis in ℳ𝑖 which is unique.
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The recoverable robust matroid basis problem. There is a strong connection between the
model described in this paper and the recoverable robust matroid base problem (RecRobMatroid)
studied in, e.g., the PhD thesis of Christina Büsing [1]. In RecRobMatroid, we are given a matroid
ℳ = (𝐸,ℬ) on a ground set 𝐸 with base set ℬ, some integer 𝑘 ∈ N, a first stage cost function 𝑐1
and an uncertainty set 𝒰 that contains different scenarios 𝑆, where each scenario 𝑆 ∈ 𝒰 gives a
possible second stage cost 𝑆 = (𝑐𝑆(𝑒))𝑒∈𝐸 .

RecRobMatroid then consists out of two phases: in the first stage one needs to pick a base 𝑋.
Then, the scenario 𝑆 ∈ 𝒰 is revealed and there is a recovery stage, where one needs to pick a second
basis 𝑌 that differs at most 𝑘 elements from the original basis 𝑋: |𝑋 ∩ 𝑌 | ≥ 𝑟𝑘(ℳ)− 𝑘. The goal
is to minimize the worst-case cost 𝑐1(𝑋) + 𝑐𝑆(𝑌 ). The recoverable robust matroid basis problem
can be written as follows:

min
𝑋∈ℬ

⎛
⎝𝑐1(𝑋) + max

𝑆∈𝒰
min
𝑌 ∈ℬ

|𝑋∩𝑌 |≥𝑟𝑘(ℳ)−𝑘

𝑐𝑆(𝑌 )

⎞
⎠ (1)

There are several ways in which the uncertainty set 𝒰 can be represented, and one popular way
is the interval uncertainty representation. In this representation, we assume that the uncertainty
set 𝒰 can be represented by a set of |𝐸| intervals:

𝒰 =
{︀
𝑆 = (𝑐𝑆(𝑒))𝑒∈𝐸 | 𝑐𝑆 ∈ [𝑐′(𝑒), 𝑐′(𝑒) + 𝑑(𝑒)], 𝑒 ∈ 𝐸

}︀

In the worst-case scenario 𝑆 we have for all 𝑒 ∈ 𝐸 that 𝑐𝑆(𝑒) = 𝑐′(𝑒) + 𝑑(𝑒). When we define
𝑐2(𝑒) := 𝑐𝑆(𝑒), it is clear that recoverable robust matroid base problem is a special case of (𝑃≥), in
which ℬ1 = ℬ2.

Büsing presented an algorithm for RecRobMatroid which is exponential in 𝑘. In 2017, Hradovich,
Kaperski, and Zielinski [3] proved that RecRobMatroid can be solved in polynomial time via some
iterative relaxation algorithm and asked for a strongly polynomial time algorithm. Shortly after,
the same authors presented in [2] a strongly polynomial time primal dual algorithm for the special
case of RecRobMatroid on a graphical matroid. The question whether a strongly polynomial time
algorithm for RecRobMatroid on general matroids exists was posed as an open question.

2 Our Contribution

Reduction of (𝑃≤𝑘) and (𝑃≥𝑘) to weighted matroid intersection. We first note that (𝑃≤𝑘)
and (𝑃≥𝑘) are computationally equivalent. To see this, consider any instance (ℳ1,ℳ2, 𝑘, 𝑐1, 𝑐2) of
(𝑃≥𝑘), where ℳ1 = (𝐸,ℬ1), and ℳ2 = (𝐸,ℬ2) are two matroids on the same ground set 𝐸 with
base sets ℬ1 and ℬ2, respectively. Define 𝑐*2 = −𝑐2, 𝑘* = rk(ℳ1) − 𝑘, and let ℳ*

2 = (𝐸,ℬ*2) with
ℬ*2 = {𝐸 ∖ 𝑌 | 𝑌 ∈ ℬ2} be the dual matroid of ℳ2. Since

(i) |𝑋 ∩ 𝑌 | ≤ 𝑘 ⇐⇒ |𝑋 ∩ (𝐸 ∖ 𝑌 )| = |𝑋| − |𝑋 ∩ 𝑌 | ≥ rk(ℳ1)− 𝑘 = 𝑘*, and

(ii) 𝑐1(𝑋) + 𝑐2(𝑌 ) = 𝑐1(𝑋) + 𝑐2(𝐸)− 𝑐2(𝐸 ∖ 𝑌 ) = 𝑐1(𝑋) + 𝑐*2(𝐸 ∖ 𝑌 ) + 𝑐2(𝐸),

where 𝑐2(𝐸) is a constant, it follows that (𝑋,𝑌 ) is a minimizer of (𝑃≥𝑘) if and only if (𝑋,𝐸 ∖ 𝑌 )
is a minimizer of (𝑃≤𝑘*) for the instance (ℳ1,ℳ*

2, 𝑘
*, 𝑐1, 𝑐*2), and vice versa. Similarly, it can be

shown that any problem of type (𝑃≤𝑘) polynomially reduces to an instance of type (𝑃≥𝑘*).
We show that, (𝑃≤𝑘) (and, hence, also (𝑃≥𝑘)), can be polynomially reduced to weighted matroid

intersection. Since weighted matroid intersection can be solved in strongly polynomial time by some
very elegant primal-dual algorithm (cf. Lawler 1970), this answers the open question raised in [3]
affirmatively
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A strongly polynomial primal-dual algorithm for (𝑃=𝑘). As we can solve matroid sum
with both, lower and upper bound constraints on the intersection of the bases, the question arises
whether or not the problem with equality constraint (𝑃=𝑘) can be solved in strongly polynomial
time. Also here we give an affirmative answer, and we provide a strongly polynomial time algorithm
that constructs an optimal solution for (𝑃=𝑘). Our algorithm can be seen as a generalization of the
algorithm presented by Hradovich et al. in [3]. However, the analysis of our algorithm turns out
to be much simpler than the one in [3].

The general idea of our algorithm is as follows. First, we find the optimal solution for

min{𝑐1(𝑋) + 𝑐2(𝑌 ) | 𝑋 ∈ ℬ1, 𝑌 ∈ ℬ2}

without any constraint on the intersection. This problem can be solved with a matroid greedy
algorithm in 𝒪(𝑚 log𝑚) time, where 𝑚 = |𝐸|. Let (�̄�, 𝑌 ) be an optimal solution of this matroid
sum problem.

1. If |�̄� ∩ 𝑌 | = 𝑘, we are done.

2. Else, if |�̄�∩𝑌 | = 𝑘′ < 𝑘, our algorithm starts with the optimal solution (�̄�, 𝑌 ) for (𝑃=𝑘′), and
iterative increases 𝑘′ by one until 𝑘′ = 𝑘. Our algorithm maintains as invariant an optimal
solution (�̄�, 𝑌 ) for the current problem (𝑃=𝑘′).

3. Else, if |�̄� ∩ 𝑌 | > 𝑘, we instead consider an instance of (𝑃=𝑘*) for 𝑘* = rk(ℳ1) − 𝑘, costs
𝑐1 and 𝑐*2 = −𝑐2, and the two matroids ℳ1 = (𝐸,ℬ1) and ℳ*

2 = (𝐸,ℬ*2). As seen above, an
optimal solution (𝑋,𝐸 ∖ 𝑌 ) of problem (𝑃=𝑘*) corresponds to an optimal solution (𝑋,𝑌 ) of
our original problem (𝑃=𝑘), and vice versa. Moreover, |�̄� ∩ 𝑌 | > 𝑘 for the initial base pair
(�̄�, 𝑌 ) implies that |�̄�∩(𝐸 ∖𝑌 )| = |�̄�|−|�̄�∩𝑌 | < 𝑘*. Thus, starting with the initial feasible
solution (�̄�, 𝐸∖𝑌 ) for (𝑃=𝑘*), we can iteratively increase |�̄�∩(𝐸∖𝑌 )| until |�̄�∩(𝐸∖𝑌 )| = 𝑘*,
as described in step 2.

The difficulty of the algorithm is to recompute the optimal solution when iteratively increasing
𝑘. To tackle this problem, we do not only keep track of optimal solution (�̄�, 𝑌 ) for a certain 𝑘,
but also a solution of the dual that satisfies some optimality conditions. Then, by a sequence of
primal and dual updates we are able to find a min-cost solution such that the size of the intersection
increased by one.

Hardness of polymatroid base problems. Finally, we consider the generalization of the prob-
lems from matroids to polymatroids. Recall that a function 𝑓 : 2𝐸 → R is called submodular if
𝑓(𝑈)+𝑓(𝑉 ) ≥ 𝑓(𝑈 ∪𝑉 )+𝑓(𝑈 ∩𝑉 ) for all 𝑈, 𝑉 ⊆ 𝐸. Function 𝑓 is called monotone if 𝑓(𝑈) ≤ 𝑓(𝑉 )
for all 𝑈 ⊆ 𝑉 , and normalized if 𝑓(∅) = 0. Given a submodular, monotone and normalized function
𝑓 , the pair (𝐸, 𝑓) is called a polymatroid, and 𝑓 is called rank function of the polymatroid (𝐸, 𝑓).
The associated polymatroid base polytope is defined as:

ℬ(𝑓) :=
{︁
𝑥 ∈ R|𝐸|

+ | 𝑥(𝑈) ≤ 𝑓(𝑈) ∀𝑈 ⊆ 𝐸, 𝑥(𝐸) = 𝑓(𝐸)
}︁
,

where, as usual, 𝑥(𝑈) :=
∑︀

𝑒∈𝑈 𝑥𝑒 for all 𝑈 ⊆ 𝐸.
Bases of a polymatroid base polytope are not necessarily 0 − 1 vectors anymore. Generalizing

set-theoretic intersection and union from sets (a.k.a. 0−1 vectors) to arbitrary vectors can be done
via the following binary operations, called meet and join: given two vectors 𝑥, 𝑦 ∈ R|𝐸| the meet of
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𝑥 and 𝑦 is 𝑥∧ 𝑦 := (min{𝑥𝑒, 𝑦𝑒})𝑒∈𝐸 , and the join of 𝑥 and 𝑦 is 𝑥∨ 𝑦 := (max{𝑥𝑒, 𝑦𝑒})𝑒∈𝐸 . Instead
of the size of the intersection, we now talk about the size of the meet, abbreviated by

|𝑥 ∧ 𝑦| :=
∑︁

𝑒∈𝐸
min{𝑥𝑒, 𝑦𝑒}.

Let 𝑓1, 𝑓2 be two polymatroid rank functions with associated polymatroid base polytopes ℬ(𝑓1)
and ℬ(𝑓2), let 𝑐1, 𝑐2 : 𝐸 → R be two cost functions on 𝐸, and let 𝑘 be rational number. The
following problem, which we denote by (𝑃≥𝑘), is a direct generalization of (𝑃≥𝑘) from matroids to
polymatroids.

min
∑︁

𝑒∈𝐸
𝑐1(𝑒)𝑥(𝑒) +

∑︁

𝑒∈𝐸
𝑐2(𝑒)𝑦(𝑒)

s.t. 𝑥 ∈ ℬ(𝑓1)

𝑦 ∈ ℬ(𝑓2)

|𝑥 ∧ 𝑦| ≥ 𝑘

Interestingly, it turns out that (𝑃≥𝑘) can be reduced to an instance of the polymatroidal flow
problem, which is known to be computationally equivalent to a submodular flow problem and can
thus be solved in strongly polynomial time. Afterwards, we show that the two problems (𝑃≤𝑘) and
(𝑃=𝑘), which can be obtained from (𝑃≥𝑘) by replacing constraint |𝑥 ∧ 𝑦| ≥ 𝑘 by either |𝑥 ∧ 𝑦| ≤ 𝑘,
or |𝑥 ∧ 𝑦| = 𝑘, respectively, are weakly NP-hard.

Acknowledgement. We would like to thank András Frank, Björn Tauer and Thomas Lachmann
for several helpful discussions about this topic. We also thank Jannik Matuschke, Tom McCormick,
Rico Zenklusen, Satoru Iwata, Mohit Singh, Michel Goemans, and Guyla Pap for fruitful discussions
at the HIM workshop in Bonn, and at the workshop on Combinatorial Optimization in Oberwolfach.

Stefan Lendl acknowledges the support of the Austrian Science Fund (FWF): W1230.

References
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1 Introduction and Problem Formulation

We consider a class of stochastic positional games that generalizes the mean payoff games on graphs
introduced by Ehrenfeucht and Mycielski [2] and considered by Gurvich et al [5] and Alpern [1].
We specify the considered class of stochastic positional games by applying the concept of positional
games to Markov decision processes with average and discounted optimization criteria. An m-player
average stochastic positional game consists of the following elements:

- a state space X (which we assume to be finite);
- a partition X = X1 ∪X2 ∪ · · · ∪Xm, where Xi represents the position set of the

players i ∈ {1, 2, . . . ,m};
- a finite set A(x) of actions in each state x ∈ X;
- a step reward f i(x, a) with respect to each player i ∈{1, 2, . . . ,m} in each

state x ∈ X and for an arbitrary action a ∈ A(x);
- a transition probability function p : X × ∏

x∈X
A(x)×X → [0, 1] that gives

the probability transitions pax,y from an arbitrary x ∈ X to an arbitrary y ∈ X
for a fixed action a ∈ A(x), where

∑
y∈X

pax,y = 1, ∀x ∈ X, a ∈ A(x);

- a starting state x0 ∈ X.
The game proceeds in a sequence of stages and starts in the state x0 at the moment of time t = 0.
The player i ∈ {1, 2, . . . ,m} who is the owner of the state position x0 (x0 ∈ Xi) chooses an action
a0 ∈ A(x0) and determines the rewards f1(x0, a0), f

2(x0, a0), . . . , f
m(x0, a0) for the corresponding

players 1, 2, . . . ,m. After that the game passes to a state y = x1 ∈ X according to a probability
distribution {pa0x0,y}. At the moment of time t = 1 the player k ∈ {1, 2, . . . ,m} who is the owner
of the state position x1 (x1 ∈ Xk) chooses an action a1 ∈ A(x1) and players 1, 2, . . . ,m receive
the corresponding rewards f1(x1, a1), f

2(x1, a1), . . . , f
m(x1, a1). Then the game passes to a state

y = x2 ∈ X according to a probability distribution {pa1x1,y} and so on indefinitely. Such a play of the
game produces a sequence of states and actions x0, a0, x1, a1, . . . , xt, at, . . . that defines a stream of
stage rewards f1(xt, at), f

2(xt, at), . . . , f
m(xt, at), t = 0, 1, 2, . . . . The average stochastic positional

game is the game with payoffs of the players

ωi
x0

= lim
t→∞

inf E

(
1

t

t−1∑

τ=0

f i(xτ , aτ )

)
, i = 1, 2, . . . ,m

where E is the expectation operator with respect to the probability measure in the Markov process
induced by actions chosen by players in their position set and fixed starting state x0. Each player
in this game has the aim to maximize his average reward per transition.
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An m-player discounted stochastic positional game is determined by the same elements men-
tioned above and a discount factor γ (0 < γ < 1). In such a game each player chooses actions in his
position set in order to maximize his expected discounted sum of stage rewards. So, the discounted
stochastic positional game is the game with payoffs of the players

σi
x0

= E

( ∞∑

τ=0

γτf i(xτ , aτ )

)
, i = 1, 2, . . . ,m.

In the case pax,y ∈ {0, 1},∀a ∈ A(x), ∀x, y ∈ X the considered stochastic positional games
become deterministic positional games with mean and discounted payoffs from [1, 2, 5].

We study the problem of the existence Nash equilibria for the considered games when players
use pure and mixed stationary strategies of a selection the action in the states.

2 Stochastic Positional Games in Stationary Strategies

A strategy of player i ∈ {1, 2, . . . ,m} in a stochastic positional game is a mapping si that provides
for every state xt ∈ Xi a probability distribution over the set of actions A(xt). If these probabilities
take only values 0 and 1, then si is called a pure strategy, otherwise si is called a mixed strategy.
If these probabilities depend only on the state xt = x ∈ Xi (i. e. si do not depend on t), then si

is called a stationary strategy. Thus, we can identify the set of mixed stationary strategies Si of
player i with the set of solutions of the system





∑
a∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x)

where six,a expresses the probability that player i chooses action a ∈ A(x) in x ∈ Xi. Each basic
solution of this system corresponds to a pure stationary strategy.

Let s = (s1, s2, . . . , sm) be a profile of stationary strategies (pure or mixed strategies) of the
players. Then we can find the probability transition matrix P s = (psx,y) of the Markov process
induced by s as follows

psx,y =
∑

a∈A(x)

six,ap
a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (1)

Therefore if Qs = (qsx,y) is the limiting probability matrix of P s then the average payoffs per
transition ω1

x0
(s), ω2

x0
(s), . . . , ωm

x0
(s) for the players are determined as follows

ωi
x0

(s) =
m∑

k=1

∑

y∈Xk

qsx0,yf
i(y, sk), i = 1, 2, . . . ,m, (2)

where
f i(y, sk) =

∑

a∈A(y)

sky,af
i(y, a), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (3)

expresses the step reward of player i in the state y ∈ Xk when player k uses the strategy sk.
The functions ω1

x0
(s), ω2

x0
(s), . . . , ωm

x0
(s), defined according to (2), (3) on S = S1 × S2 ×

· · · × Sm, determine a game in normal form that we denote by 〈{Si}i=1,m, {ωi
x0

(s)}i=1,m 〉. This
game corresponds to the average stochastic positional game in stationary strategies. In general,
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we can consider a normal form of average stochastic positional game in stationary strategies when
the starting state is chosen randomly according to a given distribution {θx} on X. In this case
we obtain a game in normal form 〈{Si}i=1,m, {ωi

θ(s)}i=1,m 〉, where

ωi
θ(s) =

∑

x∈X
θxω

i
x(s), i = 1, 2, . . . ,m.

If θx = 0, ∀x ∈ X \ {x0} and θx0 = 1 the considered game becomes a stochastic positional game
with fixed starting state x0.

The normal form of a discounted stochastic positional game in stationary strategies we denote
by 〈{Si}i=1,m, {σi

x0
(s)}i=1,m 〉, where σi

x0
(s), i = 1, 2, . . . ,m for a given s = (s1, s2, . . . , sm) ∈ S is

defined as follows. We consider the matrix W s = (ws
x,y), where W s = (I − γP s)−1 and P s = (psx,y)

is the probability transition matrix determined according to (1). Then

σi
x0

(s) =
m∑

k=1

∑

y∈Xk

ws
x0,yf

i(y, sk), i = 1, 2, . . . ,m.

In the case when the starting state is chosen randomly according to a given distribution {θx}
on X we obtain a normal form of a discounted stochastic positional game in stationary strategies
〈{Si}i=1,m, {σi

θ(s)}i=1,m 〉, where

σi
θ(s) =

∑

x∈X
θxσ

i
x(s), i = 1, 2, . . . ,m.

3 The Main Results

For an average stochastic positional game in stationary strategies 〈{Si}i=1,m, {ωi
θ(s)}i=1,m 〉 we

obtained the explicit representation of payoff functions ωi
x0

(s), i = 1, 2, . . . ,m. We have shown
that these payoff functions can be represented as follows

ωi
θ(s

1, s2, . . . , sm) =
m∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,af
i(x, a)qx, i = 1, 2, . . . ,m

where qx for x ∈ X are determined uniquely from the following system of linear equations





qy −
m∑
k=1

∑
x∈Xk

∑
a∈A(x)

skx,a pax,y qx = 0, ∀y ∈ X;

qy + wy −
m∑
k=1

∑
x∈Xk

∑
a∈A(x)

skx,a pax,y wx = θy, ∀y ∈ X

and each ωi
θ(s

1, s2, . . . , sm) is quasi-monotonic (quasi-convex and quasi-concave) with respect to
strategy si on Si and graph continuous in the sense of Dasgupta and Maskin [3]. Based on these
properties we proved the existence of mixed stationary Nash equilibria for average stochastic posi-
tional games. Additionally we have shown that an arbitrary two player zero-sum average stochastic
positional game possesses a pure stationary Nash equilibrium.

For a discounted stochastic positional game in stationary strategies 〈{Si}i=1,m, {σi
θ(s)}i=1,m 〉

we obtained the explicit representation of payoff functions σi
x0

(s), i = 1, 2, . . . ,m. We have shown
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that these payoff function can be represented as follows

σi
θ(s

1, s2, . . . , sm) =
m∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,af
i(x, a)qx, i = 1, 2, . . . ,m,

where qx for x ∈ X are determined uniquely from the following system of linear equations

qy − γ
m∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,a pax,y qx = θy, ∀y ∈ X

and each ωi
θ(s

1, s2, . . . , sm) is quasi-monotonic (quasi-convex and quasi-concave) with respect to
strategy si on Si and continuous on S. Based on these properties and the results from [6] we proved
the existence of pure stationary Nash equilibria for discounted stochastic positional games.

4 Conclusion

Stochastic positional games with finite state and action spaces generalize deterministic positional
games on graphs from [1, 2, 5]. For a nonzero average stochastic positional game a Nash equilibrium
in pure stationary strategies may not exist, however for an arbitrary average stochastic positional
game a Nash equilibrium in mixed stationary strategies always exists. In the case of two player
zero-sum average stochastic positional games there exists a Nash equilibrium in pure stationary
strategies. For a discounted stochastic positional game, there always exists a Nash equilibrium in
pure stationary strategies.
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Abstract

Graph colorings are a major area of study in graph theory involving the constrained assign-
ment of labels(colors) to vertices or edges. There are many types of colorings defined. The most
common type of coloring is the proper vertex k-coloring which is defined as a vertex coloring
from a set of k colors such that no two adjacent vertices share a common color.

Our central focus in this paper is a variant of the proper vertex k-coloring problem, termed
graceful coloring introduced by Gary Chartrand in 2015 and defined as follows. A graceful k-
coloring of a nonempty graph G is a proper vertex coloring c : V (G) → [k], where k ≥ 2, that
induces a proper edge coloring c′ : E(G)→ [k − 1] defined by c′(uv) = |c(u)− c(v)|.

In this work we find the graceful chromatic number for some well-known classes of graphs
such as Friendship graph, Petersen graph, Cactus graph and others.

1 Introduction and preliminaries

Graph colorings are a fundamental topic in graph theory and originate from the Four Color Problem
of Francis Guthrie from 1852. Since then, researchers study intensively the topic. The most known
type of coloring is the proper vertex k-coloring in which the goal is to color the vertices of an
undirected graph with k colors such that any two adjacent vertices are colored with distinct colors.
The proper vertex k-coloring is motivated by applications such as pattern matching, scheduling,
designing seating plans, exam timetabling and solving Sudoku puzzles. Besides this classical graph
coloring, many other types of colorings were introduced: harmonious, graceful, set, multiset, metric,
sigma, modular [7] etc.

In this paper we focus on another variant of the proper k-coloring problem, termed the graceful
k-coloring, introduced by Chartrand and defined as follows.

Definition 1 (Graceful coloring). A graceful k-coloring of a nonempty graph G is a proper vertex
coloring c : V (G) → [k], where k ≥ 2, that induces a proper edge coloring c′ : E(G) → [k − 1]
defined by c′(uv) = |c(u) − c(v)|. A vertex coloring c of a graph G is a graceful coloring if c is a
graceful k-coloring for some k ∈ N .

Next, we present the graceful chromatic number, which is immediately related to the concept of
graceful coloring.

Definition 2 (Graceful chromatic number). The graceful chromatic number of a graph G, denoted
by χg(G), is the minimum k for which G has a graceful k-coloring.

Bi, Byers, English, Laforge and Zhang [1, 2, 4] study the concept of graceful coloring. We
emphasize that the concept of graceful coloring is different than the related graceful labeling that
was introduced by Rosa in 1967 [6]. We refer the reader to a comprehensive survey in [5].
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Next, we present a summary of the known results on the graceful chromatic number. First,
notice that there are immediate lower and upper bounds for the graceful chromatic number of a
graph.

Observation 1. ([1]) Let χ(G) be the chromatic number of G and grac(G) be the gracefulness of
G, i.e., the smallest positive integer k for which is possible to label the vertices of G with distinct
elements of the set {0, 1, 2, . . . , k} in such way that an edge is labeled {1, 2, . . . ,m} and distinct
edges receive distinct labels. Then:

χ(G) ≤ χg(G) ≤ grac(G) ≤ 2n−1

From Definition 1 an important observation follows:

Observation 2. ([1]) If c is a coloring of a nontrivial connected graph, then c is a graceful coloring
in G if and only if:

- for each vertex v of G the vertices in the closed neighborhood of v are assigned distinct colors
by c and

- for each path (x,y,z) of order 3 in G, c(y) 6= (c(x) + c(z))/2.

Remark 3. ([7]) As a consequence of first condition in previous observation, it follows that if G
is a nontrivial connected graph, then χg(G) ≥ ∆(G) + 1, where ∆(G) is the maximum degree in G.

Recall that the distance d(u, v) between two vertices is the shortest u − v path in G, and the
diameter diam(G) is the largest distance between any two vertices of G. From Observation 2 it
follows:

Corollary 4. ([1]) For a connected graph G of order n ≥ 3 and diameter at most 2: χg(G) ≥ n.

We present a lower bound for the graceful chromatic number of a connected graph.

Corollary 5. ([4]) If G is a connected graph with minimum degree δ ≥ 2, then χg(G) ≤ d5δ/3e .

The graceful chromatic number was studied on the following classes of graphs: trees, cycles
(for a cycle Cn with n ≥ 4 vertices: χg(Cn) = 4 if n 6= 5, else χg(Cn) = 5) [1], (regular) complete
bipartite graph G = (V,E) of order n ≥ 3 (χg(G) = n) [1], Thomsen graph K3,3 or the utility
graph (χg(K3,3) = n), complete tripartite graphs (for each integer p ≤ 2, χg(Kp,p,p) ≤ 4p + 1 if p
is even and χg(Kp,p,p) ≤ 4p if p is odd) [7] and some well known graphs as wheel of order n ≥ 6
(χg(Wn) = n) [1], stars K1,n−1, n ≥ 3 (χg(K1,n−1) = n) [7], paths (χg(Pn) = 4 for n ≥ 5) [1],
caterpillar (caterpillar T with maximum degree ∆ ≥ 2: ∆ + 1 ≤ χg(T ) ≤ ∆ + 2 ) [1], cubical graph
Y4 (χg(Y4) = 5) [7].

According to [7], not all graphs of diameter 2 have the graceful chromatic number equal with
their order:

Proposition 6. ([7]) There exist infinite classes of connected graphs G of order n such that
diam(G) = 2 and χg(G) > n.

2 Our results

In this section we present new results for the graceful coloring for several individual graphs and
for several classes of graphs. We first consider some graphs with diameter 2 and χg(G) = n,
followed by some graphs with diameter 2 and χg(G) 6= n (in fact χg(G) > n), and finally some
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graphs with diameter > 2. Many of considered graphs are highly symmetrical: strongly regular
(Petersen graph), symmetric (like Heawood graph, Mobius-Kantor graph or Desarques graph) or
semi-symmetric. Others are families of graphs, like platonic solids (octahedron, dodecahedron,
icosahedron), Friendship graphs, truncated solids or Snarks.

The definitions for the graph classes showcased below can be found in [3].

Graphs with diameter 2 and χg(G) = n

We present the results concerning some graphs with diameter 2. In the previous work, the following
diameter 2 graphs have been shown to have the graceful chromatic number of their order: the class
of star graphs [7], wheel graphs with more than 5 vertices [1], the Utility graph [7].

We find that there are several others graphs with diameter 2 having graceful chromatic number
equal with their order: individual graphs (e.g. Diamond graph, Prism graph, Wagner graph,
Petersen graph) and family graphs (e.g. the Friendship graph Fn with 2n+ 1(n ≥ 2) vertices, the
Fan graph Fm,n−m where n ≥ 5).

Graphs with diameter 2 and χg(G) > n

There are some graphs of diameter 2 which have their graceful chromatic number greater than their
order, such as: Moser spindle graph (n = 7 and χg(G) = 8), House graph (n = 5 and χg(G) = 6).

Graphs with diameter greater than 2

Next we present our results regarding the chromatic number for some graphs with diameter> 2.
First, we enumerate our results on k-regular graphs (with diameter 6= 2). Durer graph (n = 12,

χg(G) = 6), Truncated tetrahedron graph (n=12, χg(G) = 5), Heawood graph (n=14, χg(G) = 5),
Tutte eight-cage (n = 30, χg(G) = 6), Dodecahedron (has 20 vertices and needs only 6 colors for a
graceful coloring). Observe that for most of them χg(G) < n.

Notice that there are some graphs which need n colors for a graceful coloring, e.g. Flower snark
graphs family, Icosahedron graph.

We also have results regarding some irregular graphs: for Double star graphs Sn,m with n+m+2
vertices the graceful chromatic number is max(n,m)+1; Jellyfish graph Jn,m have n+m+4 vertices
and χg(Jn,m) = max(n,m) + 3; Crown Cn has 2n vertices, χg(Cn) = 5 for n 6= 5 and χg(C5) = 6;
Umbrella graph Un,m, with n + m vertices has χg(Un,m) = n + 2; Helm graph Hn has n vertices
and χg(Hn) = n+ 1.

We additionally study other more restricted classes of graphs such as: French graph, Golomb
graph, Goldner-Harrary graph, Hershal graph, Prism graph; Sun graph, Cactus, Web, Braid, Tri-
angular book, Gear graph, Mongolian tent graph, Mongolian ger graph.

An example

Proposition 7. For Jellyfish graph Jn,m and n >= m the graceful chromatic number is χg(Jn,m) =
n+ 3.

Proof. The Jellyfish graph Jn,m is defined as follows. The graph Jn,m has the following set of
vertices: {u, v, u1, v1, a1, a2, . . . an, b1, b2, . . . bm}. The edges are as follows: two cycles {u, v, v1} and
{u, v, u1} which share an edge, (u, v), n pendants connected to u1, (a1, u1), (a2, u1), . . . , (an, u1),
and m pendants connected to v1, (b1, v1), (b2, v1), . . . , (bm, v1).

First, we show a graceful coloring with n+ 3 colors if n > m. Then we show a graceful coloring
with n+ 3 colors for n = m.
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Figure 1: A graceful 7-coloring of J3,4 and, respectively, a graceful 7-coloring of J4,4.

We consider first the case n > m. The coloring c : V → {1, 2, . . . , n+3} is as follows: c(u1) = 1,
c(a1) = 2, . . . , c(an) = n + 1 ,c(u) = n + 2 and c(v) = n + 3. Therefore the induced coloring
c′ for edges is as follows: c′(u1, a1) = 1, c′(u1, a2) = 2, . . . , c′(u1, an) = n, c′(u1, u) = n + 1,
c′(u1, v) = n+ 2, and c′(u, v) = 1. Thus, there are only one color which appear twice in the edges
coloring set, 1, and the edges with this color are not adjacent each other.

For vertex v1 the color c(v1) can be in set {1, 2, . . . , n+ 3} \ {1, n+ 2, n+ 3}. Let be c(v1) = 2.
Thus c′(v1, u) = n and c′(v1, v) = n + 1. The vertices bi, i ∈ [1,m], which are pendant to v1, can
have c(bi) in the set of colors {1, 4, . . . , n + 1}, which has n − 1 elements. Since n > m, this is an
appropriate graceful coloring for Jellyfish graph.

Next, we show a graceful coloring with n + 3 colors for the Jellyfish graph Jn,n. To color
vertices u1, a1, . . . , an, u, v (which are forming a star) we need n + 3 colors. Same for vertices
v1, b1, . . . , bn, u, v. Since neither vertices u1, v1, nor vertices u, v cannot have the same color, we
want to find out which colors can be assign to vertices u1, v1, u and v in order to get a graceful
coloring of Jn,n graph. Let c(u1) = 1 and c(v1) = n + 3 be the colors for the vertices u1, v1
respectively. Thus there are two colors for vertices u, v in set of {2, . . . , n+ 2} such that we have a
(n+ 3)-graceful coloring.

In Figure 1 we present a graceful 7−coloring for Jellyfish J3,4 and, respectively, an 7−coloring
for Jellyfish graph with n = m = 4.
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Abstract

A uniquely k-colourable graph is a graph with exactly one partition of the vertex set into
k colour classes. Here, we investigate some constructions of uniquely k-colourable graphs and
give a construction of Kk-free uniquely k-colourable graphs with equal colour class sizes.

We use standard terminology from graph theory and consider simple, finite graphs G with
vertex set V (G) and edge set E(G). A k-colouring of a graph G with k ∈ N is a partition C of the
vertex set V (G) into k non-empty sets A1, . . . , Ak. The colouring C is called proper if each set is an
independent set of G, that means that there are no two adjacent vertices of G in the same colour
class A ∈ C. The chromatic number χ(G) is the minimum k such that there is a proper k-colouring
of G.

We call a graph G uniquely k-colourable if χ(G) = k and for any two proper k-colourings C and
C′ of G, we have C = C′. It is easy to see that the complete graph Kk on k vertices is uniquely
k-colourable and we can obtain a family of uniquely k-colourable graphs by consecutively adding
a vertex and join it to all vertices except those of one colour class. This raises the question if all
uniquely k-colourable graphs contain Kk as a subgraph.

The properties of uniquely colourable graphs have been widely studied, for example in [3, 5, 8,
1, 7, 2, 4]. One such property—can be found in [3]—is that the union of any two distinct colour
classes induces a connected graph. Assume to the contrary that there is a graph G with unique
colouring C and there are A,B ∈ C, A ̸= B such that G[A ∪ B] has at least two components. Let
H be such a component and consider the colouring C̃ with C̃ = (C \ {A,B}) ∪ {(A \ V (H)) ∪ (B ∩
V (H))}∪{(B \V (H))∪(A∩V (H))}. Then C̃ is a proper colouring distinct from C, a contradiction.
We say C̃ is obtained from C by a Kempe change along H.

This implies that in a uniquely k-colourable graphs every vertex has a neighbour in every other
colour class. Hence, it is connected and has minimum degree at least k−1. Furthermore, a uniquely
k-colourable graphs is (k − 1)-connected. To see this, assume that there is a non-complete graph
G with a unique k-colouring C and for two non-adjacent vertices x, y, there is a separator S with
|S| ≤ k − 2. But then there are distinct A,B ∈ C with A ∩ S = ∅ = B ∩ S and (G − S)[A ∪ B] is
connected. Since x and y have neighbours in A∪B, they cannot be separated by S, a contradiction.

This question whether a uniquely k-colourable graphs always contains Kk as a subgraph was
first disproved by Harary, Hedetniemi, and Robinson [5]. They gave a uniquely 3-colourable graph
F without triangles. For larger k ≥ 4 a uniquely k-colourable graph is F + Kk−3, where G1 + G2

is the complete join of the two graphs G1 and G2.
∗Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – 327533333.
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Several years later, Xu [8] proved that the number of edges of a uniquely k-colourable graph
on n vertices is at least (k − 1) n −

(
k
2

)
and that this is best possible. He further conjectured that

uniquely k-colourable graphs with exactly this number of edges have Kk as a subgraph [8]. This
conjecture was disproved by Akbari, Mirrokni, and Sadjad [1]. They constructed a K3-free uniquely
3-colourable graph G on 24 vertices and 45 edges. For the cases of k ≥ 4, again G+Kk−3 disproves
the conjecture.

We are interested in constructions of uniquely k-colourable graphs such that the colour classes
have “nearly the same size”. One useful concept for this is the critical chromatic number introduced
by Komlós [6] in the context of bounds on a Tiling Turán number. Given a k-colourable graph H
on h vertices, let σ(H) be the smallest possible size of a colour class in any proper k-colouring of
H. Then the critical chromatic number is defined by

χcr(H) = (χ(H) − 1) · h

h − σ(H)
.

The critical chromatic number fulfils χ(H) − 1 < χcr(H) ≤ χ(H) and equality holds if and only if
in every k-colouring of H the colour classes have the same size.

All constructions above have critical chromatic number close to χ(G) − 1 = k − 1.

In the following, we give a new construction of uniquely k-colourable graphs, see Theorem 1.
Given a uniquely k-colourable graph H without Kk and χcr(H) = χ(H), this construction leads to
a uniquely (k + 1)-colourable graph G without Kk+1 and χcr(G) = χ(G). We further distinguish
this construction from a result of Nešetřil [7] and probabilistic proofs of the existence of uniquely
colourable graphs, for example, in [2].

Theorem 1. Let H be a uniquely k-colourable graph on n vertices. Then there is a graph G = ν(H)
with the following properties:

1. G is uniquely (k + 1)-colourable,

2. ω(G) = ω(H) + 1,

3. χcr(G) = χ(G) if χcr(H) = χ(H),

4. |E(G)| = (3k + 1) |E(H)| + (k − 1) n and |V (G)| = (k + 1) n,

5. The minimum degree of G is 2 δ(H) + 1,

6. H is an induced subgraph of G.

Furthermore, we give uniquely 3-colourable graphs with critical chromatic number 3 and, in
particular, find the smallest one among these. Using these graphs, the construction by Theorem 1
leads to uniquely k-colourable graphs G without Kk such that χcr(G) = χ(G) = k.
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We consider the problem of optimally rescheduling jobs from a given input sequence to a new
one, with the constraint that (a) jobs can only be postponed but not preponed and (b) when jobs
are picked up from the incoming sequence, they are put in a stack of given finite capacity before
being reinserted in their new positions. Therefore if job i precedes job j in the input sequence
and both jobs are extracted and reinserted, then job j must precede job i in the new sequence.
We denote this by Last-In-First-Out (LIFO) constraint. We consider three objective functions
to be optimized by the new sequence. The problem arises from industrial production processes
optimization, where production lots must traverse several working phases and it may be convenient
to reorganize their sequence, owing to - for instance - different processing times in each phase.
The resulting combinatorial optimization problem is a variation of that studied by Nicosia et al.
[1], where the job rearrangement is subject to the “postpone only” constraint, but not to the
Last-In-First-Out constraint.

An ILP model.
We are given an ordered set N of n jobs, the processing time pi of each job i ∈ N , the due date

δi of each job i ∈ N and the maximum size S of the stack.
We use binary variables xij ∈ {0, 1} ∀i < j ∈ N to represent the actions of a robot that can

extract jobs from the sequence and reinsert them in a successive position: each xij variable set to 1
indicates that job i is extracted and it is reinserted immediately after the subsequence that initially
terminates with job j.

LIFO constraints have the form xij + xkh ≤ 1 ∀i ≤ k ≤ j < h ∈ N . As a consequence, only
nested moves (i < k < h ≤ j) and disjoint moves (i < j < k < h) are allowed.

Stack size constraints have the form
∑

i,j∈N :i≤p,j>p xij ≤ S ∀p = 1, . . . , n − 1. They impose
that no more than S moves can be nested in one another.

We consider three objective functions: minimization of the total completion time, minimization
of the maximum lateness, minimization of the number of late jobs.

For each job i ∈ N we define its completion time ci in the initial sequence as ci =
∑i

k=1 pk and

its completion time c′i in the final sequence as c′i = ci−
∑i−1

k=1

∑n
h=i pkxkh+

∑n
k=i+1(xik

∑k
h=i+1 ph).

The term
∑i−1

k=1

∑n
h=i pkxkh indicates the advance of job i when some jobs preceding it in N are

moved after it; the term
∑n

k=i+1(xik
∑k

h=i+1 ph) indicates the delay of job i when it is postponed.
All completion times can be trivially computed in O(n) time with the recursion c1 = p1 and

∗The fifth author acknowledges the support of Regione Lombardia, grant agreement n. E97F17000000009, Project
AD-COM
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ci = ci−1 + pi ∀i = 2, . . . , n. Furthermore, it is possible to compute the duration d(i, j) of each
subsequence [i, . . . , j] in O(n2) time, as follows: d(i, i) = pi ∀i = 1, . . . , n and d(i, j) = d(i, j −
1) + pj ∀i = 1, . . . , n − 1 ∀j = i + 1, . . . , n. We define the lateness ti of each job i ∈ N as the
delay with respect to its due date: ti = ci − δi ∀i ∈ N . The lateness t′i in the final sequence is
t′i = c′i − δi ∀i ∈ N.

Owing to the space limit, here we describe only two of the three exact optimization algorithms
we have devised for the three objective functions listed above.

Total completion time minimization.
We consider the objective function z1: minimization of the total completion time.

Moves. Consider a subsequence [i, . . . , j] in N with i < j; the move (i, j) consists of deleting
job i ∈ N and reinserting it just after all jobs of the subsequence. We define its cost m(i, j) as
m(i, j) =

∑j
k=i+1 pk− (j− i)pi. The term

∑j
k=i+1 pk indicates the delay of job i; the term (j− i)pi

indicates the total advance of the other jobs in the subsequence, i.e. those in [i + 1, . . . , j]. The
value of m(i, j) indicates the variation of z1 as a consequence of the move (i, j).

Remark 1. The completion times of the jobs preceding i and following j are not affected by
the move (i, j).

Remark 2. The value of m(i, j) does not depend on the order of the jobs in the subsequence
[i+ 1, . . . , j].

Sequential moves. One of the two modes in which moves can be combined in a feasible solution
is in a sequence, i.e. one move is completed before the next one begins. Necessary and sufficient
condition for two sequential moves (i, j) and (k, h) to be compatible is that i < j < k < h (or
viceversa k < h < i < j). The effect on z1 of two sequential moves is equal to the sum of the two
effects computed separately, because the two subsequences are disjoint (see Remark 1).

Therefore, after pre-computing all costsm(i, j) for all (i, j) pairs, it is possible to find the optimal
sequence of moves by solving an instance of the shortest path problem on an acyclic digraph. The
digraph has a node for each job in N and an additional dummy node numbered n+ 1. The arc set
contains all arcs (i, i + 1) for each i ∈ N ; they have zero cost and they correspond to not moving
job i. The arc set also contains all arcs (i, j + 1) for all pairs (i, j) ∈ N ×N : j > i; they have cost
equal to m(i, j) and they correspond to moves (i, j). The cost w∗(i, j) of the shortest path for each
pair (i, j) ∈ N × (N ∪ {n+ 1}) : j > i can be easily computed in O(n2) by dynamic programming.

Nested moves. The second way in which two moves can be combined is when they are nested.
Necessary and sufficient condition for two nested moves (i, j) and (k, h) to be compatible is that
i < k < h ≤ j (or viceversa k < i < j ≤ h). We define levels of nested moves: a move that does
not contain moves nested in it is a move at level 1; a move containing moves at level up to l− 1 is
a move at level l. Hence, in the remainder moves are no longer indicated by a pair (i, j) but by a
triple (i, j, l) to indicate their level too.

The effect on z1 of two nested moves is equal to the sum of the two separate effects, because of
Remark 2: the cost m(i, j, l) does not depend on the order of the subsequence [i+ 1, . . . , j], which
is the only subsequence that can be affected by moves nested in move (i, j, l).

Therefore, after precomputing all optimal costs w∗(i, j) described above, obtainable from se-
quences of moves at level l − 1 for each subsequence [i, . . . , j] of N , it is possible to compute the
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optimal cost m(i, j, l) of each move (i, j, l), i.e. a move that can contain (sequences of) nested moves.
For l = 1, m(i, j, 1) corresponds to m(i, j) as previously defined. For l > 1, the cost of a move
(i, j, l), beyond the effects already described for the computation of m(i, j), must also take into
account the possibility of optimally rescheduling the subsequence [i + 1, . . . , j] with nested moves
at lower levels. Therefore we have:
{
m(i, j, 1) = m(i, j) ∀(i, j) ∈ N × (N ∪ {n+ 1}) : j > i
m(i, j, l) = m(i, j) + w∗(i+ 1, j, l − 1) ∀(i, j) ∈ N × (N ∪ {n+ 1}) : j > i, ∀ l = 2, . . . , S.

This definition of m(i, j, l) allows to define the costs of the arcs of the digraph for each level l, once
we have computed the costs w∗ at level l− 1. In turn, this allows to compute the optimal costs w∗

at level l.
The optimal solution is found by computing w∗(1, n+ 1, S).

Complexity. The initialization requires O(n2) time. For each level l = 1, . . . , S the algorithm
must compute m and w∗ for each pair of jobs (i, j). Each m-value for l > 1 requires O(1) time. Each
single cost w∗(i, j, l) for l ≥ 1 would require O(n2) for each pair (i, j), but all costs w∗(i, j, l) can be
computed in O(n2) over all j for fixed indices i and l. Therefore the complexity for computing w∗

at each level l is O(n3). Hence the overall complexity of the algorithm is O(n3S), which is upper
bounded by O(n4) in case there are no limits to the size of the stack.

Maximum lateness minimization.
Similar results are obtained for the second objective function, z2: minimizing the maximum

lateness.
In an initialization we compute the completion times ci, the durations d(i, j) and also the

lateness of each job and each subsequence. Given the completion times, the lateness values can be
computed in O(n) time as ti = ci − δi. After that, the values of the maximum lateness in each
subsequence t∗(i, j) can be computed in O(n2) time with the recursion t∗(i, i) = ti ∀i = 1, . . . , n
and t∗(i, j) = max{t∗(i, j − 1), tj} ∀i = 1, . . . , n− 1 ∀j = i+ 1, . . . , n.

Moves. We indicate with ti the lateness of job i before a move (i, j) and with t′i the lateness of
job i after the move. When a move (i, j) is done, the lateness of all jobs k with i + 1 ≤ k ≤ j
decreases by pi, while the lateness of job i increases by d(i+ 1, j).

As a main difference with respect to the previous case, we now denote by m(i, j) the optimal
value that the objective function would have if it were evaluated on the subsequence [i, . . . , j],
instead of the variation in the objective function due to the move (i, j). Hence we define

{
m(i, i) = ti ∀i ∈ N
m(i, j) = max{ti + d(i+ 1, j), t∗(i+ 1, j)− pi} ∀(i, j) ∈ N ×N : i < j.

The term ti +d(i+1, j) indicates the new lateness of job i, i.e. t′i; the term t∗(i+1, j)−pi indicates
the new maximum lateness of the subsequence [i + 1, . . . , j], i.e. the maximum value of t′k for
i+ 1 ≤ k ≤ j.

Sequential moves. Owing to the min-max objective function, the effect on z2 of two sequential
moves is not equal to the sum of the two separate effects. However the following property still holds.
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Remark 3. The completion time and the lateness of the jobs preceding i and following j in N
are not affected by a move (i, j).

Therefore, moves on disjoint subsequences can be evaluated independently. It follows that also
in this case, after pre-computing all costs m(i, j) for all job pairs, it is possible to compute the
optimal sequence of moves by solving an instance of a shortest path problem on an acyclic digraph
with a min-max objective function. The digraph has a node for each job and an additional node
numbered n + 1. Each arc (i, j + 1) with i ∈ N, j ∈ N and j > i has cost equal to m(i, j).
With this digraph, min-max shortest paths can be computed in O(n2) time for each pair of jobs
(i, j) ∈ N × (N ∪ {n+ 1}).

A min-max shortest path is a path that minimizes the maximum among the costs of its arcs.
Given an origin node i ∈ N , the optimal label of each node j = i + 1, . . . , n + 1 is computed as
labeli(j) = mink=i,...,j−1{max{labeli(k),m(k, j − 1)}}, with labeli(i) = 0.

The optimal cost label∗i (j) of each (i, j) shortest path is the minimum value of the maxi-
mum lateness that can be achieved in the subsequence [i, . . . , j − 1] with a sequence of moves, i.e.
label∗i (j) = t∗(i, j − 1).

Nested moves.
Remark 4. In general, a different order of the jobs in the subsequence [i+ 1, . . . , j] implies a

different value of m(i, j, l).

For l = 1 the cost m(i, j, 1) corresponds to m(i, j) as already defined. For the next levels
the algorithm must take into account the possibility of optimally rescheduling the jobs in the
subsequence [i + 1, . . . , j] with nested moves of lower levels. After precomputing all optimal costs
t∗(i, j, l−1) for each subsequence [i, . . . , j] that can be obtained with sequential moves at level l−1,
it is possible to evaluate the optimal cost of a move on each subsequence at level l > 1. Therefore
we have:




m(i, i, l) = ti ∀i ∈ N, ∀l = 1, . . . , S
m(i, j, 1) = m(i, j) ∀(i, j) ∈ N ×N : j > i
m(i, j, l) = max{ti + d(i+ 1, j), t∗(i+ 1, j, l − 1)− pi} ∀(i, j) ∈ N ×N : j > i, ∀l = 2, . . . , S.

This definition of m(i, j, l) allows to define the costs of the arcs of the digraph for each level l, once
given the costs of the moves at level l − 1.

The optimal solution is found by computing t∗(1, n, S), i.e. the optimal cost a min-max shortest
path from 1 to n+ 1 at level S.

Complexity. For each level l = 1, . . . , S the algorithm must compute m and t∗ for each pair
(i, j). Each computation of a value of m requires O(1) time. Once fixed i and l, one can compute
all values t∗(i, j, l) for each j in O(n2) time. Therefore the algorithm has the same complexity as
in the previous case, i.e. O(n3S).
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Abstract

In this work, we consider the maximum weight perfect matching problem with conflicts,
which is known to be NP-hard. We propose a tailor-made branch-and-bound algorithm with
a non-dichotomized branching rule based on a maximum weight stable set relaxation of the
problem. We have realized preliminary computational experiments on randomly generated test
instances and compared the computational performance of the new algorithm with the one of a
well-known commercial solver. Based on the obtained results we can say that it is promising.

Keywords: Maximum Weight Perfect Matching, Integer Programming, Conflicts

1 Introduction

Given a graph G = (V (G), E(G)) with the vertices V (G), edges E(G), nonnegative weights ce
and conflicting edge lists NC(e) for each edge e ∈ E(G), the Maximum Weight Perfect Matching
Problem with Conflicts (MWPMC) aims to determine a perfect matching with maximum weight
such that no two edges in the conflicting edge set are in the optimal solution. To the best of our
knowledge, the only work addressing the MWPMC is [1] where the authors introduced the problem
and have also proved itsNP-hardness. A special case of the MWPMC, namely the maximum weight
matching with conflicts in bipartite graph, is considered in [4]. The contribution of this work is
to design a tailor-made exact solution procedure, i.e. a branch-and-bound (B&B) algorithm, for
the MWPMC. We have realized preliminary computational experiments on randomly generated
instances and compared the performance of the proposed B&B algorithm with a binary integer
linear programming (BILP) formulation of the MWPMC solved on CPLEX solver. According to
the obtained results, we can say that the B&B algorithm is very efficient.

2 Two Mathematical Programming Models

Given a graph G let us define δG(v) be the set of edges incident with vertex v and dG(v) denote
the degree of vertex v. Note that dG(v) = |δG(v)| holds where |S| represents the cardinality of set
S. Furthermore, let NC(e) be the set of edges conflicting with edge e ∈ E(G). Clearly, for two
edges e and f in E(G), when f ∈ NC(e) holds then e ∈ NC(f) is satisfied, as well. We let binary
decision variable xe be equal to 1 if edge e ∈ E(G) is in the perfect matching, 0 otherwise. Then a
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BILP formulation of the MWPMC can be given as follows:

max z =
∑

e∈E(G)

cexe (1)

s.t.
∑

e∈δG(v)

xe = 1 v ∈ V (G) (2)

xe + xf ≤ 1 e ∈ E(G); f ∈ NC(e) (3)

xe ∈ {0, 1} e ∈ E(G). (4)

Here, the objective function (1) maximizes the sum of the edge weights in the solution. Constraints
(2) guarantee that each vertex is incident with exactly one edge in the solution. Constraints (3)
stipulate that at most one of the conflicting edges can be in the solution. Finally, constraints (4)
are for the binary restrictions on the decision variables.

Conflict relations can be represented using the conflict graph C = (V (C), E(C)) where each
vertex in V (C) corresponds to an edge in E(G) and each conflicting edge pair in E(G) defines an
edge in E(C). Besides, two edges in E(G) which are incident to the same vertex in V (G) are also
denoted with an edge in E(C), since they are in conflict as a natural consequence of the matching
problem. Then, the second BILP formulation for the MWPMC is as follows.

max z =
∑

e∈V (C)

cexe (5)

s.t.
∑

e∈V (C)

xe =
|V (G)|

2
(6)

xe + xf ≤ 1 {e, f} ∈ E(C) (7)

xe ∈ {0, 1} e ∈ V (C). (8)

The objective function (5) tries to maximize total weight of the edges in the solution. Constraints
(6) stipulate that the number of selected vertices in V (C) i.e. edges in E(G), constitutes a perfect
matching. Constraints (7) are for the conflicting edge pairs in E(G) and constraints (8) restrict the
the decision variable to be binary. Observe that, the BILP problem given by (5)-(8) is equivalent to
the solution of Maximum Weight Stable Set Problem (MWSS) with an additional restriction on the
number of selected vertices in V (C), namely edges in E(G). Hence, we name this problem as the
Maximum Weight Perfect Stable Set Problem (MWPSS), which is an extension of the well-known
NP-complete MWSS [2] defined on the conflict graph C.

3 Branch-and-bound algorithm

The outline of the proposed B&B algorithm is given with Algorithm 1. Although most of the steps
are self-explanatory we introduce the following notation to better explain the steps of the algorithm.
Let t be the search node index of the B&B tree and L be the set of active B&B nodes. Let I(t) be
the set of edges that must be included into the solution at node t. Then, given I(t), all edges which
are in conflict with the edges in I(t) constitute X(t) which denotes the set of edges which must be
excluded from the solution. Hence, at any B&B node t we solve a subproblem of the MWPMC,
say MWPMC(t), which is defined on subgraph G(t) = (V (G(t)), E(G(t))) of G, where V (G(t)) is the
set of vertices excluding the ones incident to the edges in I(t) and E(G(t)) = E(G) \ {I(t) ∪X(t)},
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Algorithm 1: Branch-and-bound algorithm for solving MWPMC (MWPSS) using MWSS
relaxations

1 Input: A graph G = (V (G), E(G)) edge weights ce ≥ 0, conflict graph C = (V (C), E(C));
2 Output: A maximum weight conflict free perfect matching M∗ = (V (M∗), E(M∗))
3 begin

4 (Initialization): Set t = 0, MWPMC(0) ← MWPMC, G(0)= G, C(0)= C, L =

{MWPMC(0)}, I(0)= ∅, X(0)= ∅,z = −∞
5 (Termination test): if L = ∅, then output E(M∗) and stop.

6 (Lower bounding): Select and delete a problem from L, say MWPMC(t),

7 if
∣∣E(G(t))

∣∣ < |V (G)|
2 −

∣∣I(t)
∣∣ then there is no conflict free perfect matching G with edges in

I(t) ∪ E(G(t)). Set z(t) = −∞, to prune MWPMC(t) and go to Pruning
8 else

9 Detect the maximum cardinality stable set of C(t), i.e. S(t) and compute the stability

10 number α(C(t))

11 if α(C(t)) < |V (G)|
2 −

∣∣I(t)
∣∣ then there is no conflict free perfect matching of G with

12 edges in I(t) ∪ E(G(t)). Set z(t) = −∞ to prune MWPMC(t) and go to Pruning
13 else

14 if α(C(t)) = |V (G)|
2 −

∣∣I(t)
∣∣ then I(t) ∪ S(t) are the edges of a conflict free perfect

15 matching;

16 if w(I(t) ∪ S(t)) > z then update the lower bound and incumbent by setting

17 z = w(I(t) ∪ S(t)), E(M∗) ← I(t) ∪ S(t) and go to Upper bounding
18 end if
19 end if
20 end if
21 end if

22 (Upper bounding): Solve MWSS(t) relaxation on C(t)

23 Let S
(t)
w be a maximum weight stable set on C(t) and αw(C(t)) be its weight

24 if S
(t)
w 6= ∅ then Set z(t) = αw(C(t)) + w(I(t))

25 else Set z(t) = −∞
26 end if
27 (Pruning):

28 i. if z(t) ≤ z, then go to Termination test.

29 ii. if
∣∣∣S(t)
w

∣∣∣ = |V (G)|
2 −

∣∣I(t)
∣∣ and z(t) > z then I(t) ∪ S(t)

w are the edges of a better perfect

matching. Update the lower bound z = z(t) and update the incumbent E(M∗) ← I(t) ∪ S(t)
w

go to Termination test

30 iii. if
∣∣∣S(t)
w

∣∣∣ < |V (G)|
2 −

∣∣I(t)
∣∣ and z(t) > z then I(t) ∪ S(t)

w are not the edges of a conflict free

perfect matching. Find a vertex-maximal induced subgraph C
[
W (t)

]
of C(t) with

W (t) ⊆ V (C(t)) and go to Division.
31 (Division): Order the subset of vertices V (C(t))�W (t) into a sequence {e1, e2, . . . , em}

where m =
∣∣W(t)�V (C(t))

∣∣. Then create m subproblems {MWPSS(ti)} for i = 1, 2, . . . ,m

where {MWPSS(ti)} is obtained from {MWPSS(t)} by enforcing edge ei to be in the perfect
matching. Add them to the active node list L with z(ti)=z(t) for i = 1, 2, . . . ,m and go to
Termination test

32 end
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which are so-called free edges. On the other hand, at node t we define the extended conflict graph
C(t) = (V (C(t)), E(C(t))) where V (C(t)) correspond to E(G(t)) and E(C(t)) is the set edges of C(t)

which correspond to conflicting edge pairs in E(G(t)) and the edge pairs in E(G(t)) incident with
the same vertex in V (G(t)). To obtain lower and upper bounds on the MWPMC(t) we solve the
Maximum (cardinality) Stable Set Problem (MSS) and MWSS on G(t), respectively. To this end,
we run the exact algorithm devised in [3] as a subprocedure in both Lower Bounding and Upper
Bounding steps of Algorithm 1.

Observe that in the third case of the Pruning step,
∣∣∣S(t)
w

∣∣∣ < |V (G)|
2 −

∣∣I(t)
∣∣ and z(t) > z hold.

This implies that the current maximum weight stable set S
(t)
w on C(t) together with the edges in

I(t) does not yield a perfect matching in G. Therefore, we need to insert at least one edge of G(t)

from the set V (C(t)) \S(t)
w into the solution. Then, at this stage we run a greedy heuristic to find a

maximal induced set in G(t). That is to say, given S
(t)
w we try to find

∣∣∣S(t)
w

∣∣∣ disjoint cliques of G(t)

and the union of these cliques is denoted with W (t) ⊆ V (C(t)). Then each edge in V (C(t)) \W (t)

is inserted one by one into the solution and hence we create m =
∣∣V (C(t)) \W (t)

∣∣ subproblems.
There is no standard test library for the MMPWC hence we have randomly produced 25 test

instances. All experiments are performed on an HPE SRV DL380 GEB9 Server with 2.20 GHz-E5-
2650-v4 processor and 192 GB RAM operating within Windows Server 2016. We have solved the
BILP formulation given with (1)-(4) via CPLEX 12.7.0 The number of vertices (edges), namely
|V (G)| (|E(G)|) varies from 10 to 44 (from 10 to 757). The number of conflicting edge pairs, i.e.
|E(C)|, are between 25 and 12000. We have observed the average CPU time required by the B&B
algorithm is 57.25 secs. However, this value is 58.78 secs. for the BILP formulation solved with
CPLEX. In our computations we have imposed a CPU time limit of 600 secs. In all cases we have
obtained optimum solutions with the BILP formulation within the CPU time limit. On the other
hand, in only one case, although the B&B algorithm found the optimum solution, it stopped before
enumerating all active B&B nodes in L because of the CPU time limit.
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Abstract

The concept of hyper-bag-graphs (hb-graphs for short) has been introduced in Ouvrard et al.
(2018c). A hb-graph is defined as a family of multisets - called hb-edges - of same universe,
considered as the hb-graph vertex set. Hb-graphs extend hypergraphs by allowing vertices to
have a hb-edge dependent multiplicity function. A hb-graph is called a natural hb-graph when
all individual multiplicities are non-negative integers. Such a hb-graph supports repetitions of
vertices in its hb-edges. Hb-graphs were firstly introduced to allow the construction of a tensor of
e-adjacency in general hypergraphs that is interpretable in term of hb-graph m-uniformisation,
allowing to make an alternative proposal to the one made in Ouvrard et al. (2017, 2018b).
Due to the hb-edge dependent multiplicity function, hb-graphs can store additional information
compared to hypergraphs and therefore provide richer support for knowledge discovery. Using
exchange-based diffusion, hb-graphs have already shown their efficiency for retrieving the importance
of vertices and hb-edges in co-occurence networks (Ouvrard et al. (2018d)). Hb-graphs have also
shown their efficiency in the visualisation of co-occurence networks by allowing to extend the
hypergraph-based framework proposed in Ouvrard et al. (2018a).1

1 Hb-graphs2

A full introduction to hb-graphs and their applications is made in Ouvrard et al. (2019c) where
basics on multisets are also given. We consider V = {vi : i ∈ JnK} a nonempty finite set. A hyper-
bag-graph - or hb-graph - is a family of msets of universe V and support a subset of V . The
msets are called the hb-edges and the elements of V the vertices. We write H = (V,E) such a
hb-graph and E = (ei)i∈JpK the family of hb-edges. Each hb-edge ei ∈ E is of universe V and has a
multiplicity function associated to it: mei : V → W where W ⊆ R+. When there is no ambiguity,
the notation mi is used for mei and mij for mei (vj).

A hb-graph is with no repeated hb-edges if: ∀i1 ∈ JpK , ∀i2 ∈ JpK : ei1 = ei2 ⇒ i1 = i2.
A hb-graph where each hb-edge is a mset with multiplicity range a subset of N then the hb-graph

is called a natural hb-graph. For a general hb-graph each hb-edge has to be seen as a weighted
system of vertices, where the weights of each vertex are hb-edge dependent. In a natural hb-graph
the multiplicity function can be viewed as a duplication of the vertices.

The support hypergraph of a hb-graph is the hypergraph with vertex set the hb-graph vertex
set and with hyperedge family the family of hb-edge supports of the hb-graph. In multisets, as
elements have multiplicities, one can refer to the m-cardinality of the multiset as the sum of the
multiplicity of its elements. The cardinality of a multiset corresponds to the cardinality of its
support. Hence, hypergraph features like range, co-range, uniform hypergraph, degree, regular

1cf poster presented at AMLD on https://www.infos-informatique.net
2This section has already been presented at CBMI 2018 and MCCCC 32
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hypergraph can be extended to hb-graphs by considering its support hypergraph. For the hb-graph
itself, the multiplicity of the hb-edge elements has to be considered using the m-notion associated:
m-range, m-co-range, m-uniform hb-graph, m-degree, m-regular.

We show that a hb-graph can be associated to a numbered-copy hypergraph in a unique manner.
Paths and cycles in hypergraphs can be extended with refinements to m-paths and m-cycles in hb-
graphs as the location of the copy of the intermediate vertices can also differ (inside the intersection
or in the union). The connectivity in a hb-graph is related to its support hypergraph connectivity.

k-adjacency refers to k vertices that considered as a m-set are included in one hb-edge. k-
adjacency refers to the maximal k such that k-adjacency in the hb-graph is ensured. Vertices of a
hb-edge with a nonzero multiplicity are said e-adjacent. k-adjacency and e-adjacency refer to the
same notion in m-uniform hb-graphs, but differ in general hb-graph. A vertex in a hb-edge is said
to be incident to this hb-edge. Hb-graphs can be represented either using the edge standard or in
the subset standard, like it has been achieved for hypergraphs by Mäkinen (1990).

We define the incidence matrix of a hb-graph - intensively used in Ouvrard et al. (2018d) for
diffusion by exchanges in hb-graphs - as the matrix Hof the vertex multiplicity inside the hb-edges,
i.e.: H ∆

= [mj (vi)]i∈JnK
j∈JpK

.

Building a tensor of e-adjacency for general hb-graphs has been achieved in Ouvrard et al.
(2019c). It takes several steps and it is coupled to a m-uniformisation process of the original hb-
graph.

Definition 1. The straightforward e-adjacency tensor Astr,H of a hb-graph H = (V,E)

of m-rank rH 3is the tensor of canonical hypermatrix representationAstr,H defined by: Astr,H
∆
=

∑
i∈JpK

ceiRei where for ei =
{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ E, cei =

rH
#mei

is the dilatation coefficient and

where Rei =
(
ri1...irH

)
is the hypermatrix whose elements have only two possible values: 0 and:

ρstr,ei =
mij1 ! . . .mijki

!mi n+1!

rH!
#mei - withmi n+1 = rH−#mei. The indices of the non-zero elements

of Rei are obtained by permutation of the elements of the multiset:
{
j
mij1
1 , . . . , j

mijki
ki

, (n+ 1)mi n+1

}
.

This tensor is nonnegative, symmetric, globally invariant to vertex permutations in the original
hb-graph. This tensor allows the unique reconstruction of the hb-graph it is originated from. The
fact that the tensor is symmetric allows it to be described in the number of hb-edges. We have
shown that the m-degree of vertices can be retrieved from the e-adjancy tensor as well as the
hb-edge distribution and the hb-graph m-uniformity level. Some first results on spectral analysis
of hb-graphs have been adapted from the results obtained in Qi and Luo (2017) for nonnegative
symmetric tensors. The additional vertex increases some of the bounds obtained in Qi and Luo
(2017).

2 Knowledge discovery with hb-graphs4

We introduced an exchange-based diffusion in hb-graphs in Ouvrard et al. (2018d) which is incident-
matrix-based. This diffusion process allows not only to rank vertices but also hb-edges on the basis
of their connectivity and centrality. The exchange-based diffusion, as it is shown in Figure 1, iterates

3rH = max
e∈E

#m(e), where #m(e) =
∑
v∈V

me (v) is the m-cardinality of the hb-edge e ∈ E

4The exchange-based diffusion has been presented at CBMI 2018. The concepts and results concerning the multi-
diffusion have not yet been published.
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Figure 1: Diffusion by exchange: principle Ouvrard et al. (2018d)

a two-phase step over vertices and hb-edges. In the first phase, the vertices diffuse their values to the
hb-edges they are incident in a proportion corresponding to their normalised weighted multiplicity
in these hb-edges. In the second phase, the hb-edges share their values with the vertices they hold
proportionnaly to the normalised multiplicity of their vertices. The processus has been shown to
be stochastic in Ouvrard et al. (2019b) and to converge in any connected hb-graph. It ranks the
vertices with relation to their m-degree and the hb-edges according to their m-cardinality. A full
evaluation has been conducted on random hb-graphs and has been applied to a co-occurence network
of keywords extracted from Arxiv metadata abstracts.

Ouvrard et al. (2018a) build a hypergraph framework for modeling and visualising information
in a multi-facetted co-occurence network. The information space is viewed by its multiple facets
that are linked using the common references. We have refined this approach to use hb-graphs for
the visualisation part: it has been implemented to visually query Arxiv with an enriched browsing
experience5.

In this part we introduce the mathematical aspects of a multi-diffusion process, that combines
both the work done on diffusion over hb-graphs and the hb-graph-extended hypergraph framework
for the modeling of co-occurence networks. This new still on-going work will allow us to enhance
knowledge discovery in a multifacetted information space. This work uses the information of the
diffusion to allow global knowledge discovery at the information space level.

To build co-occurences over a dataset that is multi-facetted, one chooses a dimension of reference
that has to be the same for all the facets. For instance, in a publication database, the publication
can be chosen as a reference and the different types of metadata attached to the publication in the
dataset, such as keywords, authors, organisations, ... can be the basis for the different facets of the
information space.

We consider an information space with K + 1 facets containing data instances of different types
(Tk)16k6K+1, one of them being chosen as the type of reference. We can always consider that it
is the K + 1-th, even if we need to reorder the sequence of types. The data occurences of a given
type Tk, 1 6 k 6 K + 1 contitute a set Vk attached to the k-th facet. We write R = VK+1 the set
of references. Each facet is modeled with a hb-graph Hk = (Vk, Ek), 1 6 k 6 K. The vertex set Vk
corresponds to the different occurences of data instances of type Tk found in the information space.
Ek is the family of hb-edges, each hb-edge being constituted of co-occurences of data instances
of type Tk that are attached to individual references r ∈ R. This family can potentially contain
repeated hb-edges.

We consider Rk the equivalence relation defined for e, e′ ∈ Ek by: eRe′ ⇔ e = e′. We write for
e ∈ Ek: e = {e′ ∈ Ek : eRke

′} and Ek = Ek/Rk
the set of non-repeated hb-edges. We define an

5Poster presented at AMLD Lausanne 2019 https://www.infos-informatique.net, article under writing at the time
of submission
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application we : Ek → N such that for e ∈ Ek : we (e) = |e| .
We write: Hk =

(
Vk, Ek, we,k

)
the weighted hb-graph with no repeated hb-edges.

We consider: ρk : R→ Ek such that: ∀r ∈ R,∃e ∈ Ek : ρk(r) = e; ρk is surjective.
We consider also: νk : Ek → P (R) such that: ∀e ∈ Ek : νk (e) = {r ∈ R : ρk (r) = e} .
As the set R of references is common to the different hb-graphs, we can consider: ρ : R →

E1 × ...× EK such that: ∀r ∈ R : ρ(r) = (ρ1(r), ..., ρK(r)) .
Keeping the same set of references for all facets, the hb-graphs of the different facets are

inter-connected via the references chosen for their construction. This interconnection enables the
navigation through the different facets as it is shown in Ouvrard et al. (2018a) and in Ouvrard et al.
(2019a): the references act as pivots in between the different facets interconnecting them.

We can then consider for all r ∈ R: er = {ρ1(r)mr,1 , ..., ρK(r)mr,K} . We have: ∀j ∈ JkK : mr,j =
we,j (ρk (r)). er is the multiset of the class of hb-edges that are linked to the reference r for the

different facets viewed as vertices of a new hb-graph H =

( ⋃
i∈K

Ei, E

)
, where the vertex set is

constituted of the hb-edge labels of the quotient set of hb-edges of the different facets.
A diffusion by exchange is always possible not only on each hb-graph Hk but also on H. But

in this case the information obtained is only related to the connectivity in each hb-graph. Different
strategies are foreseen to overcome this difficulty: they are presented at this conference.
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Abstract

Influence Diagrams are a flexible tool to represent discrete stochastic optimization prob-
lems, including Markov Decision Process (MDP) and Partially Observable MDP as standard
examples. More precisely, given random variables considered as vertices of an acyclic digraph,
a probabilistic graphical model defines a joint distribution via the conditional distributions of
vertices given their parents. In an influence diagram, the random variables are represented by a
probabilistic graphical model whose vertices are partitioned into three types : chance, decision
and utility vertices. The user chooses the distribution of the decision vertices conditionally
to their parents in order to maximize the expected utility. We present a mixed integer linear
formulation for solving an influence diagram, as well as valid inequalities, which lead to a compu-
tationally efficient algorithm. We also show that the linear relaxation yields an optimal integer
solution for instances that can be solved by the “single policy update”, the default heuristic
algorithm for addressing influence diagrams.

Context

Machine learning techniques are applied with growing success in Operations Research [Bengio
et al., 2018]. Most contributions apply supervised learning techniques to take heuristic choices
within discrete optimization algorithms. Surprisingly, Bengio et al. do not mention contributions
that use structured learning [Nowozin et al., 2011], the branch of Machine Learning whose goal is to
leverage combinatorial structure in learning algorithms. Graphs, and more precisely, probabilistic
graphical models [Koller and Friedman, 2009], play a central role in structured learning. We
believe that using probabilistic graphical models can be fruitful in stochastic optimization. There
are two main options to solve a stochastic optimization problem numerically: computations are
done either directly on the distribution, or on a sample approximation. The first option has many
advantages but suffers from the curse of dimensionality. Fluid approximations have been proposed
[Bertsimas and Mǐsić, 2016, Waserhole et al., 2013] to break the curse of dimensionality. These fluid
approximations happen to be special cases of variational approximations, which have been proposed
in graphical model theory [Koller and Friedman, 2009] for the same reason, and widely studied in
that context. But this link is not made in the fluid approximation literature. The present work is
the fruit of a collaboration between researchers in machine learning and researchers in operations
research to bridge the gap between the two communities on that topic. This talk will be tailored
for an Operations Research audience.

We place ourselves in the context of influence diagrams, a framework to model discrete stochastic
optimization problems using probabilistic graphical models. We show how problems considered
using fluid approximations fit in that context. We introduce mixed integer linear programming
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formulations for influence diagrams, and leverage the notion of d-separation from probabilistic
graphical model theory to introduce a family of valid inequalities. These valid inequalities can
be used in the context of fluid approximations, and more generally to strengthen mixed integer
linear programming formulation that work on distributions. The rest of this abstract introduces
the framework of influence diagrams, briefly surveys the literature, and states our contributions.
The work behind this talk is available in the following preprint [Parmentier et al., 2019].

The framework of influence diagrams

Let G = (V,E) be a directed graph, and for each vertex v in V , let Xv be a random variable taking
value in a finite state space Xv. We say that, the random vector XV := {Xv | v ∈ V } factorizes as
a directed graphical model on G if, for all xV ∈

∏
v∈V Xv, we have

P(XV = xV ) =
∏

v∈V
p(xv|xprt(v)), (1)

where prt(v) is the set of parents of v, that is, the set of vertices u such that (u, v) belongs
to E, and p(xv|xprt(v)) = P(Xv = xv|Xprt(v) = xprt(v)). Further, given an arbitrary collection of
conditional distribution

{
p(xv|xprt(v))

}
v∈V , Equation (1) uniquely defines a probability distribution

on XV =
∏
v∈V Xv.

Influence diagrams are stochastic optimization problems where probabilities are modeled using
a probabilistic graphical model. Let (V d, V c, V u) be a partition of V where V c is the set of chances
vertices, V d is the set of decision vertices, and V u is the set of utility vertices (the ones with
no descendants). We say that (V u ∪ V c, V d, E), sometimes simply denoted by G is an influence
diagram. Consider a set of conditional distributions p =

{
p(xv|xprt(v))

}
v∈V u∪V c , and a collection

of reward functions r = {rv}v∈V u , with rv : Xv → R. Then we call (G,XV , p, r) a parametrized
influence diagram.

Let ∆v denote the set of conditional distributions δv|prt(v) on Xv given Xprt(v). Given the set of
conditional distributions p, a policy δ ∈ ∆ =

∏
v∈V d ∆v, uniquely defines a distribution Pδ on XV

through

Pδ(XV = xV ) =
∏

v∈V u∪V c

p(xv|xprt(v))
∏

v∈V d

δv|prt(v)(xv|xprt(v)). (2)

Let Eδ denote the corresponding expectation. The purpose of this talk is to provide tractable
mathematical programming formulation for the Maximum Expected Utility problem

max
δ∈∆

Eδ

( ∑

v∈V u

rv(Xv)

)
, (3)

which aims at finding a policy δ that maximizes utilities.
Influence diagrams can model several stochastic optimization problems as special cases. Con-

sider for instance a maintenance problem where at time t a machine is in state st. The action at
taken by the decision maker according to the current state is typically maintaining it (which is
costly) or not (which increase the probability of failure). State and decision yields a new (random)
state st+1, and the triple (st, at, st+1) induce a reward rt. This is an example of Markov decision
processes (MDP) which are probably the simplest influence diagram, represented in Figure 1a.

In practice, the actual state st of the machine is not known, but we can only have some
observation ot, which leads to a more complex influence diagram known as Partially observed
Markov decision processes (POMDP). In theory an optimal decision should be taken knowing all
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(a) A Markov decision process (MDP)
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(b) A Partially Observed Markov Decision Pro-
cess (POMDP)

Figure 1: Influence diagrams examples, where we represent chance vertices (V u ∪ V c) in circles,
decision vertices (V d) in rectangles, and utility vertices in diamonds (V u).

past obervations and decisions (which is the perfect recall case). However, this would leads to
untractable decision strategies which requires long memory. It is usual to restrict the decision at
to be taken only with respect to observation ot, as illustrated in Figure 1b.

Influence diagrams enable to model richer interactions. Consider for instance two chess players
: Bob and Alice. They are used to play chess and for each game they bet a symbolic coin. However,
they can refuse to play. Suppose that Alice wants to play chess every day. At each time step, she
has a current confidence level st. The day of the game, her current mental fitness is denoted ot.
When Bob meets Alice, he takes the decision to play depending on her attitude and her appearance
of the day, denoted ut. Then Bob can accept or decline the challenge, and his decision is denoted
at. Let vt denote the winner (getting a reward rt). Then, Alice’s next confidence level is affected
by the result of the game and her previous confidence level. This stochastic decision problem can
be modeled by an influence diagram as shown in Figure 2.
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Figure 2: Bob and Alice chessgame

Influence diagram were introduced by Howard and Matheson [1984] to model stochastic opti-
mization problems using a probabilistic graphical model framework. Originally the decision makers
were assumed to have perfect recall [Shachter, 1986]. Lauritzen and Nilsson [2001] relaxed this
assumption and provided a simple (coordinate descent) algorithm to find a good policy: the Single
Policy Update (SPU) algorithm. The same authors also introduced the notion of soluble ID as a
sufficient condition for SPU to converge to an optimal solution. This notion has been generalized
by Koller and Milch [2003] to obtain a necessary and sufficient condition. SPU finds a locally opti-
mal policy, but performs exact inference, and is therefore limited by the treewidth. More recently,
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Mauá and Campos [2011] have introduced a new algorithm, Multiple Policy Update, which has both
an exact and a heuristic version and relies on dominance to discard partial solutions. To the best
of our knowledge, mathematical programming approaches have not been proposed for influence
diagrams.

Contributions

We provide a mixed integer linear programming (MILP) formulation to the MEU Problem (3), and
valid inequalities that strengthen the formulation. Numerical experiments show the relevance of
our approach. We give interpretation the linear relaxations obtained in terms of graphs. Finally,
we show that influence diagrams that can be solved to optimality through SPU can be solved by
(continuous) linear programming using our formulation.
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1École polytechnique, France, julie.poullet@polytechnique.edu
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Abstract

Airlines’ ground staff agents perform many jobs at airports such as passengers check-in and
planes cleaning. Shift planning aims at building the sequences of jobs operated by ground staff
agents, so that all jobs are operated at minimum cost. Flight leg delays disrupt ground staff
schedules, which leads to high additional costs. We therefore introduce a stochastic version of
the shift planning problem that takes into account the cost of disruptions due to delay and
a column generation approach to solve it. Column generation’s key element is the algorithm
for the pricing subproblem, which we model as a stochastic resource constrained shortest path
problem. Numerical experiments on industrial instances have proven the relevance and efficiency
of our approach. Including delay costs allows airlines to reduce the total operating costs by 3%
to 5%, and column generation can solve to optimality instances with up to two hundred and
fifty jobs, and one hundred scenarios.

Keywords: Stochastic ground staff scheduling, stochastic shift planning, column generation,
stochastic resource constrained shortest path, flights delay

1 Introduction

Deterministic ground staff scheduling problems have been less studied than airplane and crew
scheduling problems as they are not specific to airlines and can be treated using standard approaches
of the personnel scheduling literature [1]. However, this last assertion becomes false when delay
is taken into account. Indeed, the personnel scheduling literature focuses on uncertainty about
demand volume, demand arrival time, and manpower availability [1], but does not take into account
the propagation of delay. On the contrary, the construction of sequences of flight legs that do not
propagate delay has been extensively studied for airplanes and crews, see e.g. [2, 3, 4]. But to the
best of our knowledge, the problem of building sequences of tasks for ground staff agents that do
not propagate delay has not been considered yet.

This work is the result of a project initiated by Air France, the main French airline, to build
schedules resilient to delay. We propose a stochastic ground staff shift planning problem which takes
into account delay propagation in Air France’s operational model. Stochasticity is modeled using
scenario based distributions.

To solve this problem, we provide a column generation approach which solves to optimality
instances with up to 210 jobs and 200 scenarios in a few minutes. As delay propagates along shifts,
stochasticity is handled in the pricing subproblem. The latter is solved through a framework for
resource constrained shortest path problem recently introduced by the second author [5]. Inside
that framework, a non-trivial algebraic structure models delay propagation. To the best of our
knowledge, this is the first practically efficient algorithm for shift planning with delay propagation.
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2 Problem statement

Every job j is characterized by a fixed time interval [tbj ,tej ], where tbj represents its beginning time
and tej its ending time in the nominal case, i.e. without delay. A shift sh is a sequence of jobs

j1, j2, . . . , jk, beginning at hbsh and finishing at hesh, such that te
ji
≤ tb

ji+1 for all i in {1, . . . , k − 1},
hbsh 6 tbj1 and te

jk
6 hesh. Working rules impose that the total duration τ between hbsh and hesh does

not exceed a maximum duration τmax, and that shift contains a break whose location is subject to
specific constraints. We denote by SH the set of all feasible shifts.

When a flight is delayed, its delay propagates to the associated jobs, influencing their beginning
time, their ending time, or both. It causes potential issues in the schedule of the agent operating
them since some job successions may no longer be possible. At Air France, in that situation, back-up
agents are sent to operate all the jobs that the initial agent cannot operate. A job j is said to be
rescheduled if it is operated by a back-up agent, which happens when the agent who is supposed
to operate the job j is still doing a previous job when j starts.

We make the simplifying assumption that a job in a shift sh can be only rescheduled due to the
job right before it in sh, but not due to the previous ones.

Operating a shift sh generates two sources of costs for the airline. The first one comes from
agents wage and is a non-decreasing function of the total duration cw(τ). The second one is due to
a fixed cost cback incurred for each rescheduled job. Let nbacksh be the (random) number of jobs of
sh rescheduled. The expected cost csh of a shift is csh = cw(hesh − hbsh) + E

(
cbacknbacksh

)
.

The stochastic ground staff shift planning problem consists in finding a set S of shifts of minimum
cost and such that each job in J is operated by at least one shift in S.

3 Column generation approach

The following master problem introduces a set-partitioning formulation of the stochastic ground
staff shift planning problem.

min
y

∑

sh∈SH
cshysh (1a)

s.t.
∑

sh3j
ysh = 1, ∀j ∈ J (1b)

ysh ∈ {0, 1}, ∀sh ∈ SH (1c)

Binary variable ysh indicates if a shift sh ∈ SH belongs to the solution. The notation sh 3 j means
that the job j is realized during the sequence of sh, thus the constraint (1b) ensures that all jobs
in J are covered. Master problem (1) is therefore immediately equivalent to our stochastic ground
staff shift planning problem.

By denoting by λj the dual variable associated to constraint (1b) for job J , the underlying
pricing subproblem of the master problem is:

min
sh∈SH

csh −
∑

j∈sh
λj
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The instances of the following numerical results come from runway jobs operated by Air France.
All instances are solved to optimality. Table 1 proves the relevance of our approach, since it enables
to reduce the total operating cost by 3% to 5%. These numbers are with respect to the deterministic
approach which does not take into account potential rescheduling when building the shifts. It also
shows that the difficulty of our approach lies in solving the pricing subproblem.

Instance Number Pricing Total time Improvement vs
of tasks time (%) (hh:mm:ss) deterministic problem (%)

1 49 85.1 00:00:22 3.31
2 111 98.4 00:02:10 4.32
3 210 99.4 00:27:22 5.49
4 256 99.7 03:43:09 5.17

Table 1: Performances of our approach to solve master problem (1) with 200 scenarios

4 Pricing subproblem

The difficulty of the pricing subproblem lies in the non-linearity and the stochasticity of shift cost.
Contrary to classical pricing subproblem of that kind, which are often modeled as deterministic
shortest path problems, or deterministic resource constrained shortest path problems, we need to
model ours as a stochastic resource constrained shortest path problem.

We classically model our problem using a digraph D = (V,A), where the vertices are the jobs,
and the arcs are the pairs of jobs which can be chained. For more clarity, we present a simplified
situation: a fixed beginning time hb and ending time he for all shifts, without lunch break. The

set of vertices is V = {o}∪
(⋃

j∈J{j}
)
∪{d}, where o and d are the origin and destination vertices,

representing the beginning and ending time of the shift. The set of arcs A contains all the ordered
pair (j1, j2) such that tej1 ≤ tbj2 , as well as all the pairs (o, j) and (j, d) for j in J .

Proposition 1. There is a bijection between shifts and o-d paths in D.

We then seek to decompose the cost csh along the vertices j, or arcs (j1, j2) between two
jobs. However, given the delay propagation, the need for rescheduling a job depends on the jobs
previously operated in the shift, and impacts the future ones. In other words, the cost of a vertex
in a path is determined by the sequences of vertices before it, and impact the costs of the sequence
of vertices after it. Figure 1 presents four tasks whose beginning time and ending time are shown
both in the nominal case, i.e. without delay, and under a scenario ω, in which delay occurs. We
focus on job j4 and try to assign to it a cost. Let’s consider only three different potential shifts:
shift sh1 = j3− j4, sh2 = j2− j4 and sh3 = j1− j2− j4. These shifts are feasible since all proposed
sequences are feasible in the case without delay. However the cost of job j4 varies under scenario
ω, regarding the shift considered. In shift sh1, job j4 is not rescheduled. In shift sh2, job j4 is
rescheduled since job j2 now finishes after its beginning time. Finally, in shift sh3, job j4 is not
rescheduled. Indeed the agent operates job j1, and since job j2 has to be rescheduled, the agent
is available to operate job j4. The example provided in Figure 1 sheds light on the difficulty of
determining whether a task is rescheduled or not. It also underlines the combinatorial part of the
problem we are dealing with.

125



time

j1
j2

j3

j4Scenario ω

j1
j2

j3
j4

Without delay

Figure 1: Partial shift sh with five jobs with rescheduled and non-rescheduled first job under two
different scenarios

To overcome this difficulty, we model the pricing subproblem within the framework for stochastic
resource constrained shortest path problems (MRCSP) recently introduced by the second author [5].
It leverages the notion of lattice ordered monoid to derive an algorithm particularly efficient on
stochastic shortest path problem.

Modeling our problem as a MRCSP requires the introduction of an algebraic structure (a lattice
ordered monoid) that keeps track, for every scenario, of the duration and the cost of a path P in
two cases: when the first task of P is not rescheduled and when it is. It thus enables us to propagate
delay along the tasks of a shift.
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On the Problem Class of Optimal Technology Implementation

into a Multisectoral Energy System (OTIMES)

Andreas Schwenk1
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Abstract

We address the problem of implementing energy storage and energy converter devices into
an existing multisectoral energy network, described by a graph G = (V,E). The objective
is to reduce the total greenhouse gas emissions by using limited monetary investment costs.
The underlying problem class is upper bound to 0 − 1 Mixed Integer Quadratic Constrained
Programming (MIQCP). In this extended abstract, we primarily denote modeling aspects. We
will present relaxations to 0− 1 Mixed Integer Linear Programming (MILP) in the talk.

1 Introduction

We consider the problem of Optimal Technology Implementation into a Multisectoral
Energy System (abbreviated, OTIMES, ⊗). Given a set of energy networks with distinct energy
sectors (e.g. power, gas and heat), a set of consumers demands varying amounts of energy over
a period of time. A set of producers supplies conventional and renewable energy over a period
of time. The underlying network flow problem optimally transmits energy from sources to sinks
such that renewable resources are consumed first. To further minimize the total greenhouse gas
emissions, we integrate the following technologies into the system:

(a) Consider a surplus of supplied renewable energy at time t1 that is not demanded immediately.
Then, at time t2 > t1, energy must possibly be retrieved from another, conventional energy
supplier with higher greenhouse gas emissions. The implementation of an energy storage, e.g.
in form of a battery, supports to decrease the cumulated waste of renewable sources.

(b) Storing produced renewable energy in the same sector is not always an option. For example,
large batteries that buffer power energy are costly, as well as emit high greenhouse gas emissions
at time of production. It can be beneficial to convert surplus renewable energy into another
energy sector using e.g. Power-To-Gas (abbreviated, P2G).

From the point of view of the application domain, there is referring research available, e.g. in
[2]. The high degree of freedom in terms of simultaneous location finding and device parameter
estimation considered here, is not known to the author.

2 Notation

We will use graph-theoretical notation in the following, despite different terminology is common in
the application domain. A graph is an ordered pair G = (V,E) with a set of vertices (nodes) V (G)
and a set of edges E(G). Our considered graphs are directed and finite, unless otherwise stated.
For simplicity, let [n] declare the set {1, 2, . . . , n} for n ∈ N.
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3 Modeling

Let G = (V,E) be a digraph that describes a set of physical energy networks. Initially, each energy
sector i is represented by a subgraph Gi ⊆ G. It applies Gi ∩ Gj = ∅ for all i 6= j. The graph Gi
contains cycles for physical reliability purposes only. We consider discrete time steps t ∈ [T ]. For
simplicity, all energy resources are represented in kilowatt hours (kWh).

The set of n vertices V (G) is partitioned into the disjoint union V := A∪B∪S∪N of producers
(sources) A, consumers (sinks) B, storage devices S, and intermediate nodes N . A producer a ∈ A
offers the amount of energy p+t (a) ∈ R+

0 ∪ {∞} at time t. The production of energy induces
greenhouse gas emissions γ(a) ∈ R+

0 that depend on the energy flow f . A consumer b ∈ B demands
the amount of energy p−t (b) ∈ R+

0 at time t.
The set of m edges E(G) is partitioned into the disjoint union E := C ∪ S ∪ N of converter

edges C, storage edges S and intermediate edges N . All lines of the physical networks are mapped
to the set of edges of the graph G. We denote the maximum energy flow of an edge e ∈ E as
capacity c(e) ∈ R+

0 . Transmission losses are approximated by an efficiency factor η(e) ∈ [0, 1] ⊆ R.
The current energy flow at time t is described by ft(e) ∈ R+

0 [kWh].

We integrate technical devices into the network by an a priori definition of candidate locations.
Storage and converter devices are modeled as depicted in Fig. 1. The actual instantiation of a
device is controlled by a binary variable I(e ∈ E) ∈ Z2. The objective is to choose an optimal
subset of technology instances out of all candidates. A device is instantiated, iff I(e) ∈ Z2 equals
1 := True. We can reduce the number of candidates drastically by defining heuristics, e.g. a
condition ‖p(u)− p(v)‖2 < ε, with p(u) and p(v) the geometrical positions of u, v ∈ V (G). The
capacity c(v) of a storage device is upper bound to the cumulative capacity of incident edges of v.

A set of device types is encoded into a database (matrix) for storage devices S and a device
database (matrix) for converter devices C, respectively:

(a) The i-th row of S = (si,j) ∈ Rm×n describes a storage device of type si = (η, cl, cu, γ, α, k̂0, k̂1, k̃).
For candidates that are incident with I(e ∈ uv), we set the constraints cl ≤ c(v) ≤ cu,
k̂(v) = k̂1 · c(v) + k̂0 and k̃(v) = k̃ · ft(e), with fixed costs k̂ ∈ R+

0 and variable costs k̃ ∈ R+
0 .

(b) The i-th row of C = (ci,j) ∈ Rm×n describes a converter device of type ci = (η, cl, cu, γ, α, k̂0, k̂1, k̃).

For candidates I(e), we set the constraints cl ≤ c(e) ≤ cu, k̂(e) = k̂1·c(e)+k̂0 and k̃(e) = k̃·ft(e).

4 Definition

The objective function minimizes the total greenhouse gas emissions of all producers and devices:

min





∑

{u∈{A∪S}|e=uv}

(∑

t

γ(u)ft(u, v)

)
+

∑

e=uv∈C
γ(e)ft(u, v)



 (1)

with the set of decision variables x = {ft, I, s1, s2, σt, η, c, γ, α, k̂, k̃}. The size n := |x| depends on
the size of the concrete problem instance. The constraints are defined in the following:

(a) Limit the overall costs k = f(k̂, k̃) to an upper bound ku ∈ R+
0 :

∑

v∈S
I(u, v)

(
k̂(v) +

∑

t

ft(u, v)k̃(v)

)
+

∑

e=uv∈C
I(u, v)

(
k̂(e) +

∑

t

ft(u, v) k̃(e)

)
≤ ku

(2)
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G1 :

u ∈ V \ S

s1 ∈ S

eα1

eα2
eα3

e1 e2

G2 :

u ∈ V v ∈ V

eα1

eα2

eα3

e1 ∈ C
eβ1

eβ2

eβ3

G3 :

u ∈ V v ∈ V

s2 ∈ S

eα1

eα2

eα3

e1 ∈ C e2

eβ1

eβ2

eβ3

Fig. 1: G1: Modeling of a storage device: Vertex u is part of the initial energy network. The storage candidate
is described by edges e1, e2 ∈ E(G) and a vertex s1 ∈ V (G); thus we apply V (G) := V (G) ∪ {s1} and E(G) :=
E(G)∪{e1, e2}. G2: Depicts a simple converter device, that converts energy from node u ∈ V (G) to node v ∈ V (G).
The energy sector for both nodes is distinct. G3: Representation of a complex device that combines both storage
and converter capabilities.

(b) The definition of constraints for the underlying network flow problem, with line efficiency
η ∈ [0, 1] ⊆ R, time t ∈ [T ], and instance variables I(e) ∈ Z2 is as follows:

∑

e=uv∈E
ft(u, v) = p+t (u) ∀t ∀u ∈ A

∑

e=uv∈E
ft(u, v) = p−t (v) ∀t ∀v ∈ B

∑

e=uv∈E
η(u, v)ft(u, v) −

∑

e=uv∈E
ft(v, u) = 0 ∀t ∀v ∈ N

∑

e=uv∈E
I(u, v)η(u, v)ft(u, v) −

∑

e=uv∈E
I(u, v)ft(v, u) = 0 ∀t ∀{v | v ∈ S ∨ uv ∈ C}

(3)

We denote the state of charge (SoC) for storage devices v ∈ S at time t by σt(v), as well as the
maximum capacity by c(v). The maximum input and output flow is bound by 0 ≤ ft(e) ≤ α σt,
with some constant factor α ∈ [0, 1] ⊆ R to approximate the real (nonlinear) physical behavior
σ(t) = c(v)(1− e−t/τ ):

0 ≤ ft(u, v) ≤ α(v) σt ∀t ∀{v | uv ∈ E ∧ v ∈ S}
0 ≤ ft(u, v) ≤ c(u, v) ∀t ∀uv ∈ E (4)

(c) The charging and discharging behavior of a storage s ∈ S is defined as follows:

σ0(v) = 0 ∀v ∈ S
σt(v) = σt−1(v) + I(u, v)ft(u, v)− I(u, v)ft(v, u) ∀t \ {0} ∀v ∈ S
0 ≤ σt(v) ≤ c(v) ∀v ∈ S

(5)

(d) Let s(v) ∈ Zm(S)
2 be binary a vector that selects the i-th device type from database S for a

storage device v ∈ S. Then we determine the device parameters for the instance as follows:
∑

i si(v) = 1 ∀v ∈ S
η(v) = s(v) · S∗,1, s(v) · S∗,2 ≤ c(v) ≤ s(v) · S∗,3 ∀v ∈ S
γ(v) = s(v) · S∗,4, α(v) = s(v) · S∗,5 ∀v ∈ S
k̂(v) = c(v) s(v) · S∗,6 + s(v) · S∗,7, k̃(v) = c(v) s(v) · S∗,8 ∀v ∈ S

(6)

(e) Let s(e) ∈ Zm(C)
2 be a binary vector that selects the i-th device type from database C for a

converter device at edge e ∈ E(G). We apply the modeling from (d), but replace all occurrences
of S by C and all occurrences of v by e ∈ C.
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5 Problem class

Let x be the set of n decision variables and let m be the number of constraints. All OTIMES-
constraints can be transformed into the following form:

gi :
∑

j

(
αj
∏̀

k=1

yk

)
≤ 0 ∀i ∈ [m], with αj ∈ R and yk ∈ x := {x1, x2, . . . , xn} (7)

For ` ≥ 3, the product y1y2 . . . y` can be substituted by ỹy`−1y` recursively, whereby ỹ = y1y2 . . . y`−2
is added to the set of decision variables and gm+1 : ỹ − y1y2 . . . y`−2 = 0 is added to the set of
constraints. The following kinds of quadratic terms ỹ := y1 y2 remain in OTIMES:

(a) y1 ∈ Z2, y2 ∈ R: Assuming y2 is bounded to 0 ≤ y2 ≤ c, with c ∈ R, then ỹ can be substituted
by ỹ ≤ c · y1 ∧ ỹ ≤ y2 ∧ ỹ ≥ 0 ∧ ỹ ≥ y2 − (1− y1)c. The reformulation is linear.

(b) If both y1,2 ∈ R are continuous, then ỹ cannot be linearized without approximation, and the
term remains quadratic.

The problem is upper bound to 0−1 Mixed Integer Quadratic Constrained Programming (MIQCP)
and has the form:

min f0(x) s.t. fi(x) ≤ 0 ∀i ∈ [m] (8)

A subset of decision variables is binary, i.e. xi ∈ Z for all i ∈ I with I ⊆ [n]. Functions fi are
defined by fi : Rn → R, x 7→ xTPix + qTi x + ri with matrices Pi = (pjk) ∈ Rn×n, vectors qi ∈ Rn
and ri ∈ Rn. For OTIMES, the matrices Pi have the following form:

Pi = (pjk) ∈ Zn×n2 =

(
P̃i O
O O

)

P̃i = (p̃jk) ∈ Zñ×ñ2 with P̃i = P̃ Ti and p̃jj = 0 ∀j ∈ [ñ]

(9)

We can approximate the ratio ñ/n to (|S|+ |C|) / m(G). Accordingly, the quadratic part depends
on the number of device candidates. Furthermore, submatrices P̃i are sparse for all i ∈ [m].
Matrices Pi are not positive definite and thus the problem as-is can not be reduced to Semi-Definite
Programming (SDP).

6 Perspective

In this extended abstract, we demonstrated the modeling of OTIMES and formalized the problem
definition. The problem is NP hard [1]. We will discuss the concrete problem class X, which is
0− 1 MILP ⊆ X ⊆ 0− 1 MIQCP in the talk. Based on the structural properties, we will present
approximation approaches.
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Abstract

We show optimal k-anonymous microaggregation is NP-hard for k ≥ 26, extending a previous
result showing the NP-hardness only for k = 3. This lower bound already holds for 2 attributes.
Our construction uses similarities between microaggregation and the k-means problem. A known
reduction of Planar 3-SAT to the k-means problem is adapted to k-anonymous clustering.

1 Introduction

The problem of k-anonymous microaggregation [DF09] arises in the context of utility-preserving
microdata anonymization. It describes the clustering of a database consisting of n elements with m
numerical attributes into clusters of size at least k. After the clustering, all elements of a cluster are
replaced with their cluster centroids in order to obtain anonymized data. The goal of k-anonymity
is to prevent an attacker with some information about an element of the database to obtain full
information about his target. The privacy of elements is increased, because information on specific
elements is limited by hiding each one in a group of k identical-appearing elements. In order not
to destroy the quality of the data one would like to generate as little distortion as possible.

Definition 1. (k-anonymous microaggregation problem) Let d(·, ·)2 be the squared Euclidean
distance between two m-dimensional vectors and c(xi) = 1/|C(xi)| ·

∑
x∈C(xi)

x the centroid of the
cluster C(xi) of xi in a partitioning C. Given a sequence of n vectors X = x1, . . . ,xn of dimension
m, i.e. xi ∈ Rm, find a partitioning C = {C1, . . . , C`} of X with centroids c(Ci) such that

∀i ∈ {1, . . . , `} : |Ci| ≥ k, and Cost(C) :=
n∑

i=1

d (xi, c(xi))
2 is minimized.

In a multiset-respecting clustering all elements xi, xj with identical attributes are clustered together.

The k-anonymous microaggregation problem in a way is dual to the k-means problem. Whereas
the k-means problem asks for a clustering into at most k clusters of arbitrary size, the k-anonymous
microaggregation seeks to cluster elements in an arbitrary amount of clusters with each having at
least k elements. Similar to the k-means problem [Llo82], we measure the distortion by the sum
of squared errors (SSE) between elements and their cluster representatives. Optimal k-anonymous
microaggregation is achieved if the SSE of a clustering is minimal over all k-anonymous clusterings.

In 2001, Oganian and Domingo-Ferrer claimed that the anonymization problem is NP-hard
[ODF01]. However, they only give a proof for k = 3 and their reduction does not work for other
values of k. The most we could see is that allowing arbitrary duplications of vectors the proof can
be extended to multiples of 3. For k-anonymization we do not know of any technique to translate
a hardness result for some value of the parameter k to larger values contrary to most classical
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decision or optimization problems. On the one hand, this problem seems intuitively more difficult
if the minimal size of a cluster is increased, on the other hand having to deal with less clusters may
make things easier. Thus, the status for most values of k is still open. In this paper we will take
another approach and are able to show that the problem is NP-hard for all values of k ≥ 26.

2 From Planar 3-SAT to k-anonymous microaggregation

Our reduction is inspired by a reduction from Planar 3-SAT to optimal Planar k-means presented
by Mahajan, Nimbhorkar and Varadarajan in 2009 [MNV09]. We use a slightly modified reduction
function to take into consideration the differences between k-means and k-anonymous clustering.

Definition 2. (Planar 3-SAT problem) Let F be a 3-CNF formula with variables {v1, . . . , vn}
and clauses {c1, . . . , cm}. We call G(F ) := (V,E) the (undirected) graph of F , where

V = {vi | 1 ≤ i ≤ n} ∪ {cj | 1 ≤ j ≤ m}
E = E1 ∪ E2 where
E1 = {(vi, cj) | vi ∈ cj or vi ∈ cj}
E2 = {(vj , vj+1) | 1 ≤ j < n} ∪ {(vn, v1)}.

If G(F ) is a planar graph, F is called a planar 3-CNF formula. The planar 3-SAT problem is to
determine whether a given planar 3-CNF formula F is satisfiable.

The Planar 3-SAT problem has been shown to be NP-hard by Lichtenstein in 1982 [Lic82].

Theorem. The optimal k-anonymous microaggregation problem is NP-hard for k ≥ 26.

The theorem is proven by creating a database X out of a Planar 3-SAT instance F . To show
correctness, it is necessary to argue that the constructed microaggregation instance has an optimal
solution C with Cost(C) not higher than a predefined threshold if and only if F is satisfiable.

2.1 Construction

Let F be a Planar 3-SAT instance with n variables vi and m clauses cj . We use the graph G(F )
to construct a 2-dimensional instance (X , k) for the k-anonymous microaggregation problem.

Consider G(F ) with all E2 edges removed, i.e. G′(F ) = (V,E1).

1. Compute a planar embedding E of G′(F ) and for each vertex, assign numbers κ to incident
edges according to a cyclic ordering.

2. Replace every variable vertex vi by a cyclic subgraph with m vertices v1i , . . . , v
m
i . Reroute all

edges eκ incident to vi to vκi . Observe that it is still possible to obtain a planar embedding
E ′ of the resulting graph G′′(F ).

3. Place every vertex of G′′(F ) on an integer grid and route edges along grid lines.

4. Inflate the grid by a factor of b ≥ 14, which guarantees that every vertex or bend point u of
an edge has no other bend point or vertex inside a box Bu of size b× b grid lengths and inside
a smaller box Su of size 6× 6 grid lengths.

5. Replace every edge between a variable vertex vκi and a clause vertex cj by a pair of parallel
rectilinear paths separated by two grid squares. At the clause vertex end, connect both paths
by a straight line on the border of Scj and on the variable vertex end, connect one path with

the edge to vκ−1i and the other path with the edge to vκ+1
i to form a continuous circuit si.
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Figure 1: Step 1, 2, 3 and 5 of the construction for F = (v1 ∨ v2 ∨ v3) ∧ (v2 ∨ v3 ∨ v4) ∧ (v1 ∨ v2)

c1 c1

Figure 2: Step 6 and 7 of the construction around vertex c1. Edges of true matchings are highlighted.

6. Move every clause vertex cj to the center of the north-west grid square touching it. Extend
all circuits incident to a clause vertex cj so that they all are in distance 5/2 grid lengths to cj .
Observe that all circuits are of even length and do not intersect.

7. There are two possible perfect matchings on the grid points on any circuit si. Fix one of them
and call it true matching from now on (the other one is subsequently called false matching).
If a clause cj contains a variable vi in non-negated form, and the clause vertex cj is closer to
a true matching edge of si, nothing needs to be changed. This holds analogously for negated
variable and false matching edge. If however a matching is not according to the sign of a
variable in a clause, the variable circuit is modified near the clause vertex, to correct this.

8. To conclude the construction, database elements are created out of the resulting structure:
Let β be the squared grid length. Around every circuit at squared distance β from each
other, place M database elements at the same position, so that these points are placed on
top of the vertices used for the circuit matchings. Note that there is an even number of such
vertices and therefore an even number of element positions on any circuit. Clause vertices
are represented by single elements. The anonymization parameter k is set to be 2M .

2.2 Correctness

We can observe the squared distance between two adjacent circuit points is β and between any
two non-adjacent circuit points is at least 2β. The squared distance between a circuit and a clause
vertex is α := (5/2)2β. The squared distance between a clause vertex and both endpoints of a
circuit’s edge closest to it is α+ β/4, all other circuit points are at least at squared distance α+ 5/4β
from the circuit vertex. Clause vertices have at least squared distance θ := b2β from each other.
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Lemma 3. Consider a database without clause points. Let ` be half the number of circuit points.
An optimal 2M -anonymous clustering has ` clusters and any cluster contains all elements from two
adjacent circuit points. There is a minimal distance between optimal and non-optimal clustering:

1. Clustering the circuit points into consecutive pairs has cost `Mβ
2 .

2. Any other clustering of circuit points has cost at least `Mβ
2 + Mβ

2 .

Proof of lemma 3 (sketch). Statement 1. can be easily verified. To show that any other clustering
has costs as stated in 2. we need to consider several cases: (a) The biggest cluster contains elements
from 2 circuit points. (b) The biggest cluster contains elements from 3 circuit points and is multiset-
respecting. (c) The biggest cluster contains elements from 3 circuit points and is not multiset-
respecting. (d) The biggest cluster contains elements from more than 3 circuit points. By using the
minimal cluster size of k = 2M it can be shown, that in every case, the cost is indeed as stated.

Lemma 4. A formula is satisfiable if and only if the associated database has a k-anonymous
clustering of cost at most `Mβ

2 + 2M
2M+1αm.

Proof of lemma 4 (sketch). ⇒: If the formula is satisfiable, every clause vertex can be clustered
with two circuit points nearby. ⇐: Uses the result of lemma 3. Holds if M > 1/2(25m−1), resulting
in a minimum M of 13 and therefore a minimum k of 26.

So far the construction can handle only instances with even k ≥ 26. It is however possible to adjust
the construction, so that on any circuit, points with multiplicity M and M + 1 are alternating.
Together with k = 2M + 1 and analogous calculations to those in lemma 3 and lemma 4 it is
possible to extend the claim to odd values ≥ 26.

3 Conclusion

An obvious question is what about smaller values of k. It seems unlikely that for values of 4 ≤ k ≤ 25
anonymization becomes easier. We tried to tune this construction, but geometrical constraints seem
to prevent further decrease. Is there another hard problem more suited for the reduction?
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2Radboud University Nijmegen, The Netherlands

Abstract

Instrumental variables (IVs) are a popular approach to identify causal effects. For valid inference,
IVs must not be direct causes of any variable in the model except the explanatory variable X . Such
variables do not exist in many model instances, so the approach has been generalized to conditional
IVs. However, a barrier for application of this method is of algorithmic nature: So far, it was not clear
whether such conditional IVs can be tested and found efficiently. We prove that it is indeed an NP-
complete problem to test if a given variable is a conditional IV. However, if the covariates are restricted
to ancestors, this test can be performed in linear time. This implies a new definition of IVs, which we
term ancestral IVs. It turns out that an ancestral IV exists if and only if a conditional IV exists in a graph.
We use this definition to obtain efficient algorithms to find conditional IVs.

Introduction. Discovering and quantifying causal relationships is a key goal of empirical sciences. An-
alyzing causes of diseases, economic crises and other complex phenomena is of great social and economic
importance. However, for ethical or economic reasons questions such as “Does smoking cause lung cancer?”
or “What are the major causes of economic crises?” can be difficult to examine through direct experimenta-
tion. On the other hand, there are often available large amounts of observed data that can provide relevant
information about these issues.

Causal inference is a rapidly growing field involving mathematical statistics, machine learning and some
sub-fields of artificial intelligence and computer science. The goal is to explore from observed data and phe-
nomena the causal relationships between different objects and actions, like e.g., between medical treatment
and recovery. The theory of causality allows a rigorous characterization of the circumstances under which,
given sufficient knowledge about a system, experimental data can be substituted by observational data for
causal inference [4]. In this paper, we study algorithmic and complexity aspects involving instrumental
variables (IVs) a widely used approach to infer cause-effect relationships [1, 2, 3]. We mostly present our
results from [5] and some extensions improving time complexities of our algorithms.
Graphical Concepts. Graphical causal models represent a data-generating causal process as a graph, most
commonly as a directed acyclic graph (DAG) of n nodes and m edges. Every node in the DAG corresponds
to a random variable and every edge X → Y represents a direct causal effect of X on Y . The concept
of d-separation links conditional independences between these random variables to paths in the DAG. Let
An(W) denote all ancestors of nodes W. A node C on a path π is called a collider if two arrowheads of π
meet at C, i.e., if π contains X → C ← Y . A collider C is open given a set W if C is in W ∪ An(W). A
path π is d-connecting given a set W, if every collider on π is open given W and every non-collider is not
in W. Two nodes X,Y are called d-connected by a set W if there is a d-connecting path π between them.
If X,Y are not d-connected by W, W d-separates them. A path that is not d-connecting is blocked. When
the data is consistent with the graphical model, variables X,Y in the data are conditionally independent
given a set of variables W, if nodes X,Y are d-separated given nodes W [4].
The Identification Problem. In a structural equation model (SEM) it is assumed that the random variables
influence each other linearly, i.e., the expected value of each variable is a linear function of some other
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Figure 1: (A) The classic IV model. (B) Z is not an IV, but is a conditional instrument given W . (C) Z1 is
an IV and Z2 is a CIV given W but not an ancestral IV. In all cases, U is treated as unobserved variable.

variables, namely of its parents in the DAGs. Every edge is also given a weight, the direct causal effect.
We assume that all variables are normally distributed and normalized to have unit variance. Moreover, we
distinguish variables that are considered as observed (measured; we denote the set of these variables as M)
and such that are unobserved (meaning they are absent from the data or cannot be measured). Figure 1A
represents example causal equations Z = εZ ,X = βZ+λ1U+εX , and Y = γX+λ2U+εY , with random,
normally, independently distributed error terms εX , εY , and εZ , assuming Z,X, Y are observed and U is an
unobserved variable. A unit change of Z, for example, changes the value of X by β. However, any change
of X leaves the expected value of Z unchanged, since X is not a cause or ancestor of Z.

The identification problem in SEMs consists in recovering the weights (i.e., direct causal effects) be-
tween observed variables given the graphical structure of the model and data for observed variables. For a
SEM in Fig. 1A the task would be to estimate β and γ. This problem plays a fundamental role in the theory
and practice of SEMs. However, though some partial solutions are given, in general, the problem remains
still unsolved. A widely used approach to identify parameters in SEMs is based on IVs.
The IV-based Method. If we know the causal effects at each edge, we can easily calculate the correlations
between all random variables from the model. Assuming all variables are normalized to variance 1, the
correlation (covariance) Cov(Z, Y ) between two variables Z, Y is equal to

∑
π

∏
e∈π ce(e) where ce(e) is

the causal effect of edge e, the product goes over every edge e on path π and the sum goes over every path π
between Z and Y that is d-connected. In the example Fig. 1A there is exactly one open path Z → X → Y
between Z and Y , so the correlation Cov(Z, Y ) is βγ. Analogously, Cov(Z,X) = β and Cov(X,Y ) =
γ + λ1λ2. In Fig. 1B we have Cov(Z, Y ) = βγ + µ1µ2(λ1γ + λ2). By regressing Y on Z,W we can also
identify the product βγ.

On the other hand, if we know the correlations between variables in M and the (presence and directions)
of edges, but not the causal effects of the edges, we can calculate the causal effects from the correlations (if
the model is true). Such identities are of great importance since correlations are readily provided by observed
data. In theory one can construct polynomial equation systems that link the causal effects to the correlations
and solve these for the causal effects. However, in practice the resulting equation systems can only be solved
for trivially small models. Nevertheless, in certain situations one can find a simple expression. For example
in Fig. 1A the causal effect ofZ onX is easily obtained as β = Cov(Z,X). Knowing that Cov(Z, Y ) = βγ,
we can estimate the causal effect γ = βγ/β = Cov(Y,Z)/Cov(X,Z). In Fig. 1B one can use γ = βγ/β,
where both β and βγ can be obtained by regression, and in Fig. 1C similarly γ = βµ1µ2γ/µ1µ2β.

The graphical language used in causal modeling allows one to express sufficient conditions for a causal
effect of X on Y that can be obtained by this method from the covariance matrix in an elegant way as (a) Z
is d-connected to X by W, (b) Z is d-separated from Y in Gc = G \ (X → Y ) by W, and (c) W consists
of non-descendants of Y . An additional constraint is that not all variables in the DAG are observed, so
one does not know the correlations between every pair of variables. We assume correlations are known for
variables in the set M of observed variables thus we require X , Y , Z ∈M, and W ⊆M. If Z fulfills these
conditions, Z is called a conditional instrument (CIV) (relative to X → Y ). If W = ∅, Z is just an IV. If
W ⊆ An(Y, Z), we call Z an ancestral instrument (AIV) [5]. Fig. 1 (A) shows an IV, (B) an AIV and (C)
a CIV. Of course every IV is an AIV and every AIV is a CIV. Main results of this paper are the following:
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Theorem 1. Determining if, for given X,Y, Z ∈ M, node Z is a conditional IV relative to X → Y is an
NP-complete problem.

Theorem 2. Determining if, for given X,Y, Z ∈M, node Z is an ancestral IV relative to X → Y can be
done in O(n+m) time.

Theorem 3. For given variables X,Y ∈ M, an ancestral IV Z ∈ M relative to X → Y exists iff a
conditional IV Z ′ ∈M relative to X → Y exists.

Corollary 4. Finding, for given X,Y ∈ M, a conditional IV Z relative to X → Y or verifying that no
conditional IV exists can be done in O(n(n+m)) time.

Theorem 1 is proved by reducing 3SAT to the testing of a CIV using the construction of Fig. 2. The only
observed nodes are the V nodes in rows 2 to 4, so only these nodes might occur in W ⊆M. Z is a CIV iff
there is a d-connected path between Z and X , and no d-connected path between Z and Y .

Every clause of the 3SAT instance corresponds to a collider Ci on the path between X and Z at the
top. Each clause-node has three children V k

j (or V k
j ) corresponding to literals xj (xj) in the clause with the

index j representing the variable and k an occurrence indicator (so the number of V nodes in the 2nd row of
Fig. 2 is exactly three times the number of clauses). The path between X and Z is d-connected given W if
and only if each collider Ci has a child in W. Thus to make Z a CIV, one needs to choose nodes V k

j , V k
j to

include in W, which corresponds to choosing a literal in each clause to set to true in the 3SAT instance.
The graphical structure below the 2nd row ensures that this choice is consistent, i.e., one cannot include

both V k
j and V k′

j in W. For each variable there is a path Y ′ → Pj ← Fj → Nj ← Y ′′, such that collider Pj

is an ancestor of all positive V k
j nodes and Nj an ancestor of all negative V k′

j nodes. Choosing both V k
j and

V
k′

j for inclusion in W would open these two colliders and open the d-connected path Y ← Y ′′ . . . Y ′ →
C ′
1 . . . Z between Y and Z, preventing Z from being a CIV.

X C ′1 C1 C ′2 C2 C ′3 · · · Z

Y ′ P1 F1 N1 Y ′′

...
...

...

Pn Fn Nn Y

V 1
1 · · · V o1
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Figure 2: Reduction of 3SAT to the instrumentalization problem (edge X → Y is omitted). Each variable
Ci stands for a clause in the input formula. Here n stands for the number of variables in the 3SAT instance.

We show Theorem 2 with an efficient algorithm that finds the set W for an AIV under the constraint
W ⊆ An(Y, Z) in O(n + m). First note that we can ignore X and the condition that W should not
d-separate X and Z, if we choose W as small as possible, such that any other set d-separates more nodes.
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Figure 3: Three DAGs with unobserved variables {U,U1, U2}. The nearest separators for Y and Z are {V2}
and {V1, V2} in (A), {V1, V2} in (B) and {V1, V4} in (C).

A set W ⊆ M \ {Y,Z} is called a nearest separator if (a) W d-separates Y and Z, and (b) for any
W ∈W and any set W′ ⊆M \ {W,Y,Z} it holds: if W′ does not d-separate W and Z, then W′ does not
d-separate Y and Z. For example in Fig. 3A (the only) nearest separators are the sets {V2} and {V1, V2}.
V1 can be included, because any d-connecting path from Z to V1 can be extended to a d-connecting path to
Y , but is unnecessary, since such a path is already blocked at V2. In Fig. 3B the only nearest separator is
{V1, V2}. Since node U is unobserved, the bottom path is d-connecting without V2, but V2 alone d-connects
the path through V1. Similarly in (C) the nearest separator is {V1, V4}. V5 must not be included, since it is a
collider that would lead to more d-connecting paths.

In principle a nearest separator can be found by a greedy algorithm that searches a (d-connecting) path
from Y to Z and adds the first node of the path to W, until W d-separates Y and Z. Two complications
arise, first unobserved nodes cannot be added to W, and secondly, when a collider from the path is added
to W, the path remains d-connecting. It can be shown that this is fine. One can always use the first
observed node not yet in W and the colliders will help to block other paths, e.g., like V2 on the path
Y ← U → V2 ← V1 → Z in Fig. 3B. The nearest separator can also be found in linear time O(n + m)
by a reachability search that starts at Y , stops on observed non-colliders and continues through unobserved
nodes or colliders in An(Y, Z). All (observed) nodes reached by this search form a nearest separator.

Once W has been found it is easy to verify, whether it satisfies the conditions of an AIV.
To prove Theorem 3 we start with a CIV Z that is not an AIV and search another node in the DAG that

is an AIV. It is a well-known fact of causal models that if there exists any set that d-separates Y and Z, there
exists a subset of An(Y,Z) that d-separates Y andZ. Thus the purpose of the additional nodes W\An(Y,Z)
is not to d-separate Y and Z, but to d-connect X and Z, i.e., to open a collider C on a path between X and
Z. This collider is clearly d-connected to X . C might be an AIV, but it might also be unobserved. But the
node W ∈W that opens C is observed, and d-connected to X given W \W . It can be shown that at least
one such W is also d-separated from Y and, when W is minimal, an AIV.
Conclusion. We can find an AIV or CIV Z for given X,Y in time O(n(n + m)). However, testing if a
given Z is a CIV is NP-complete, which is surprising, since finding is usually harder than testing.
Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grant LI 634/4-2.
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Abstract

A graph G is called hamiltonian-connected if for every pair of distinct vertices {u, v} of G
there exists a Hamilton path in G that connects u and v. A graph G is said to be t-tough if
t ·ω(G−X) ≤ |X| for all X ⊆ V (G) with ω(G−X) > 1. The toughness of G, denoted τ(G), is
the maximum value of t such that G is t-tough (taking τ(Kn) = ∞ for all n ≥ 1). It is known
that a hamiltonian-connected graph G has toughness τ(G) > 1, but that the reverse statement
does not hold in general. In this presentation, we investigate all possible forbidden subgraphs H
such that every H-free graph G with τ(G) > 1 is hamiltonian-connected. Except for one open
case H = K1 ∪ P4, we characterize all possible graphs H with this property.

1 Introduction

We use standard graph terminology and notation adopted from the textbook [4], and consider
simple graphs only. Let G be a graph with vertex set V (G). For a given graph H, we say G is
H-free if G does not contain an induced copy of H. Let ω(G) denote the number of components
of the graph G. As introduced by Chvátal in [7], we say that a connected graph G is t-tough if
t · ω(G −X) ≤ |X| for all X ⊆ V (G) with ω(G −X) > 1. The toughness of G, denoted τ(G), is
the maximum value of t such that G is t-tough (taking τ(Kn) =∞ for all n ≥ 1).

A cycle in a graph G is called a Hamilton cycle if it contains all vertices of G, and a graph
is said to be hamiltonian if it contains a Hamilton cycle. A Hamilton path in a graph G is a
path that contains all vertices of G, and a graph G is hamiltonian-connected if every pair of
vertices of G occurs as the end vertices of a Hamilton path of G. It is easy to verify and a
well-known fact that a hamiltonian graph is 1-tough, and that a hamiltonian-connected graph
has toughness strictly larger than one. It is also known that the reverse statements do not hold,
i.e., there exist infinitely many nonhamiltonian 1-tough graphs, and there exist infinitely many
graphs with toughness strictly larger than one that are not hamiltonian-connected. It is natural
and interesting to investigate under which additional conditions the reverse statements do hold.
In other words, under which additional conditions are the properties of being 1-tough and being
hamiltonian equivalent, and similarly for the stronger properties of having toughness strictly larger
than one and being hamiltonian-connected. The type of additional conditions we focus on here
are forbidden subgraph conditions. For hamiltonicity this type of problem was addressed by the
authors of [10].

In [10], the aim was to characterize all possible graphs H such that every 1-tough H-free graph
is hamiltonian. The almost complete answer was given there by the conclusion that every proper
induced subgraph of K1 ∪ P4 (the graph on five vertices consisting of a path on four vertices and
an additional vertex with degree 0) can act as a forbidden subgraph to ensure that every 1-tough
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graph is hamiltonian, and that there is no other forbidden subgraph with this property, except
possibly for the graph K1 ∪ P4 itself. This was left as an open case for hamiltonicity, and it seems
to be a very hard case. To date it is even unknown whether there exists some constant t such that
every t-tough K1 ∪ P4-free graph is hamiltonian.

Instead of researching this open case, we consider the stronger property of being hamiltonian-
connected under the same additional forbidden subgraph conditions, assuming the toughness to be
strictly larger than one. We find that the results are completely analogous to the hamiltonian case:
every graph H such that any 1-tough H-free graph is hamiltonian also ensures that every H-free
graph with toughness larger than one is hamiltonian-connected. And similarly, there is no other
forbidden subgraph having this property except possibly for the open case K1 ∪ P4.

2 Preliminaries

Since its introduction by Chvátal [7] in the 1970s, the toughness notion has received a lot of
attention, mainly inspired by Chvátal’s Conjecture which states that there exists a constant t0
such that every t0-tough graph on n ≥ 3 vertices is hamiltonian. This conjecture is still wide open,
although many results have been obtained since, inspired by the results and open problems in [7].
For several years, it was believed that t0 = 2 should be the correct value, because this would imply
several other conjectures, including the conjecture in [11] that every 4-connected claw-free graph is
hamiltonian. Since 2000 we know that t0 ≥ 9/4, because in [3] the authors constructed an infinite
family of nonhamiltonian graphs with toughness arbitrarily close to 9/4 from below. The survey
paper [2] deals with a large number of results related to toughness that have been established until
more than ten years ago. A more recent survey of results and open problems appeared a few years
ago [5].

Because of the difficulty of proving or refuting Chvátal’s Conjecture, researchers considered the
toughness condition restricted to several different classes of graphs. In some cases, the necessary
condition of being 1-tough turns out to be also sufficient for hamiltonicity, as in the following result.
Here a path on k vertices is denoted by Pk, a complete graph on k vertices by Kk, and we use
G ∪H to denote the disjoint union of two disjoint graphs G and H, and we use kG to denote the
graph consisting of k disjoint copies of the graph G.

Theorem 1 ([10]). Let R be an induced subgraph of P4, K1 ∪ P3 or 2K1 ∪K2. Then every R-free
1-tough graph on at least three vertices is hamiltonian.

Note that every induced subgraph of P4, K1 ∪ P3 or 2K1 ∪K2 is also an induced subgraph of
K1∪P4, and that K1∪P4 is the only induced subgraph of K1∪P4 that is not an induced subgraph
of P4, K1 ∪ P3 or 2K1 ∪K2. The following complementary result shows that there is no graph H
that can ensure every 1-tough H-free graph is hamiltonian other than the induced subgraphs of
K1 ∪ P4.

Theorem 2 ([10]). Let R be a graph on at least three vertices. If every R-free 1-tough graph on at
least three vertices is hamiltonian, then R is an induced subgraph of K1 ∪ P4.

The two theorems together clearly leave K1 ∪P4 as the only open case in characterizing all the
graphs H such that every H-free 1-tough graph is hamiltonian.

A hamiltonian graph is 1-tough, and hence 2-connected, so a hamiltonian-connected graph on
at least three vertices is also 2-connected. It is even clearly 3-connected: if there exists a cut set
{u, v}, then u and v cannot be connected by a Hamilton path, because only the vertices of one
component can be picked up. It is almost equally easy to show that a hamiltonian-connected graph

140



has toughness strictly larger than one. This can be seen by considering an arbitrary cut set S in a
hamiltonian-connected graph G, and a Hamilton path P between two distinct vertices u and v of
S (noting that |S| ≥ 3 since G is 3-connected). Now, obviously ω(G − S) ≤ ω(P − S) ≤ |S| − 1,
hence τ(G) > 1.

In 1978, Jung [8] obtained the following result, in which he shows that for P4-free graphs, the
necessary condition τ(G) > 1 is also a sufficient condition for hamiltonian-connectivity.

Theorem 3 ([8]). Let G be a P4-free graph. Then G is hamiltonian-connected if and only if
τ(G) > 1.

3 Our results

In a paper of 2000 [6], Chen and Gould concluded that if {S, T} is a pair of graphs such that
every 2-connected {S, T}-free graph is hamiltonian, then every 3-connected {S, T}-free graph is
hamiltonian-connected. Following up on this idea, we considered the following question. Suppose
R is a graph such that every 1-tough R-free graph is hamiltonian. Is then every R-free graph G
with τ(G) > 1 hamiltonian-connected? For the purpose of answering this question, we tried to
prove each of the forbidden subgraph cases analogous to the statement in Theorem 1. Of course
Theorem 3 has already given us a partial positive answer. And indeed, we get a positive answer
for each of these cases, as indicated in the following result.

Theorem 4. Let R be an induced subgraph of K1 ∪ P3 or 2K1 ∪K2. Then every R-free graph G
with τ(G) > 1 on at least three vertices is hamiltonian-connected.

We note here that from the proof of this result, it can be observed that the toughness condition
τ(G) > 1 in the above result cannot be weakened to the condition that the graph is 3-connected. We
also proved the following analogue of Theorem 2, showing that except for the induced subgraphs
of K1 ∪ P4, there are no other forbidden induced subgraphs that can ensure every graph with
toughness larger than one is hamiltonian-connected.

Theorem 5. Let R be a graph on at least three vertices. If every R-free graph G with τ(G) > 1 on
at least three vertices is hamiltonian-connected, then R is an induced subgraph of K1 ∪ P4.

We conclude this extended abstract with the left unknown case as an open problem.

Problem 6. Is every K1 ∪ P4-free graph G with τ(G) > 1 on at least three vertices hamiltonian-
connected?

As remarked earlier, we do not even know whether such graphs are hamiltonian, even if the
condition on the toughness is replaced by τ(G) > t for any constant t ≥ 1. Relations between
different hamiltonian properties and toughness conditions have been studied in [1], leading to
several equivalent conjectures, some seemingly stronger and some seemingly weaker that Chvátal’s
Conjecture. In the presentation, we will reflect on these aspects and sketch the key ingredients of
the proofs of Theorem 4 and Theorem 5.
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Abstract

During the last decade several research groups have published results on sufficient conditions
for the hamiltonicity of graphs in terms of their spectral radius and their signless Laplacian spec-
tral radius. Here we extend some of these results. All of our results involve the characterization
of the exceptional graphs, i.e., all the nonhamiltonian graphs that satisfy the condition. The
proofs of our main results are based on the Bondy-Chvátal closure, a degree sequence condition
due to Chvátal, and an operation on the edges that is known as the Kelmans transformation.

1 Introduction

It is well-known that the problem of deciding whether a given graph is hamiltonian or not is an
NP-complete problem. Many scholars have focussed on finding sufficient conditions for graphs to
be hamiltonian. Nowadays, spectral graph theory is an important research area within the field
of algebraic graph theory. It mainly deals with all kinds of spectral properties of the matrices of
graphs (like the adjacency matrix, Laplacian matrix, signless Laplacian matrix, distance matrix,
distance signless Laplacian matrix, and so on). During the last decade, many scholars have applied
spectral graph theory to the problem of hamiltonicity of graphs. In this way, one can hope to judge
whether a graph has a Hamilton cycle or not based on some spectral property. This is usually
achieved by a combination of algebraic methods and the exploration of the graph structure.

We firstly introduce some basic terminology and notation. Let G be a graph with vertex set
{v1, v2, . . . , vn}. Then the adjacency matrix A(G) of G is the symmetric n × n-matrix with entries
A(i, j) = 1 if and only if vivj ∈ E(G) and zeros elsewhere. The diagonal degree matrix D(G) of G is
the n×n-matrix with entries D(i, i) = d(vi) and zeros elsewhere. The matrix Q(G) = D(G)+A(G)
is known as the signless Laplacian matrix of G. The largest eigenvalue of A(G), denoted by ρ(A(G))
or ρ(G), is called the spectral radius of G. The largest eigenvalue of Q(G), denoted by q(Q(G)) or
q(G), is called the signless Laplacian spectral radius of G.

Next we introduce Kelmans transformation [4] and the notion of an equitable partition, which
are both helpful to prove our main results.

Let G be a graph and let u, v ∈ V (G). We construct a new graph G∗ by replacing all edges vx
by ux for every x ∈ N(v) \ N [u], which is known as Kelmans transformation.

Suppose M is a symmetric real n × n-matrix whose rows and columns are indexed by X =
{1, . . . , n}. Let π = {X1, . . . , Xm} be a partition of X. Let M be partitioned according to
{X1, . . . , Xm}, i.e.,

M =




M11 . . . M1m
...

...
Mm1 . . . Mmm


 ,
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where Mij denotes the block of M formed by the rows in Xi and the columns in Xj . Let bij =
1T Mij1

|Xi| , i.e., the average row sum of Mij , where 1 is the column vector (of the correct dimension)

with all entries equal to 1. Then the matrix M/π = (bij)m×m is called the quotient matrix of M .
If the row sum of each block Mij is a constant, then the partition is called equitable.

To put our results in the right context, we first introduce a number of sufficient conditions for
hamiltonicity in terms of the spectral radius, and signless Laplacian spectral radius, respectively,
that were obtained in the last decade. Our aim is to extend these results.

2 Sufficient conditions in terms of spectral radii

We start with the results that are based on the spectral radius. In 2010, Fiedler and Nikiforov [2]
presented the following sufficient condition for hamiltonicity.

Theorem 1 ([2]). Let G be a graph of order n. If ρ(G) > n − 2, then G is hamiltonian unless
G = K1 ∨ (Kn−2 + K1).

Note that the graph G = K1 ∨ (Kn−2 + K1) is clearly not hamiltonian: it has a vertex with
degree 1, and is also not 1-tough. The work of [2] spurred the interest of several research groups.
In 2015, Ning and Ge [9] obtained the following closely related sufficient condition for a graph G
with minimum degree δ(G) ≥ 2 to be hamiltonian.

Theorem 2 ([9]). Let G be a graph of order n ≥ 14 with δ(G) ≥ 2. If ρ(G) ≥ ρ(K2∨(Kn−4+2K1)),
then G is hamiltonian unless G = K2 ∨ (Kn−4 + 2K1).

Note that K2 ∨ (Kn−4 + 2K1) is another example of a graph that is not 1-tough. Excluding
a family of four classes of graphs that are not 1-tough, Benediktovich [1] obtained the following
extension of the result of Ning and Ge.

Theorem 3 ([1]). Let G be a graph of order n ≥ 9 with δ(G) ≥ 2. If ρ(G) ≥ n − 3, then G is
hamiltonian unless G ∈ {K4 ∨ 5K1,K3 ∨ (K1,4 + K1),K1 ∨ (Kn−3 + K2),K2 ∨ (Kn−4 + 2K1)}.

By imposing the minimum degree condition δ(G) ≥ k, for general integers k ≥ 1, Li and Ning
[5] established the following result.

Theorem 4 ([5]). Let k be an integer, and let G be a graph of order n. If δ(G) ≥ k ≥ 1 and
ρ(G) ≥ ρ(Kk ∨ (Kn−2k + kK1)), where n ≥ max{6k + 5, (k2 + 6k + 4)/2}, then G is hamiltonian
unless G = Kk ∨ (Kn−2k + kK1).

Recently, Nikiforov [8] extended and strengthened Theorem 4 in the following sense.

Theorem 5 ([8]). Let G be a graph of order n with δ(G) ≥ k. If k ≥ 2, n ≥ k3 + k + 4 and
ρ(G) ≥ n−k−1, then G is hamiltonian unless G = K1∨(Kn−k−1+Kk) or G = Kk∨(Kn−2k+kK1).

More recently, Ge and Ning [3] showed that the statement in the above theorem due to Nikiforov
also holds for k ≥ 1 and n ≥ max{1

2k3 + k + 5
2 , 6k + 5}.

For the signless Laplacian radius, we start with the following results due to Yu and Fan [10],
and Liu et al. [7], respectively.

Theorem 6 ([10]). Let G be a graph of order n ≥ 3. If q(G) > 2n − 4, then G is hamiltonian
unless G = K2 ∨ 3K1 or G = K1 ∨ (Kn−2 + K1).
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Theorem 7 ([7]). Let G be a graph of order n ≥ 4 with δ(G) ≥ 2. If q(G) ≥ 2n − 5 + 3
n−1 , then

G is hamiltonian unless G = K3 ∨ 4K1 or G = K2 ∨ 3K1.

By imposing the minimum degree condition δ(G) ≥ k, for general integers k ≥ 1, Li and Ning
[5] established the following counterpart of Theorem 4.

Theorem 8 ([5]). Let k be an integer, and let G be a graph of order n. If δ(G) ≥ k ≥ 1 and
q(G) ≥ q(Kk ∨ (Kn−2k + kK1)), where n ≥ max{6k + 5, (3k2 + 5k + 4)/2}, then G is hamiltonian
unless G = Kk ∨ (Kn−2k + kK1).

The most recent result in this area that we are aware of is the following result due to Li et al.
[6].

Theorem 9 ([6]). Assume k > 1 and n ≥ k4 + k3 + 4k2 + k + 6. Let G be a connected graph with
n vertices and δ(G) ≥ k. If q(G) ≥ 2(n − k − 1), then G is hamiltonian unless G ∈ M1(n, k) or
G ∈ L1(n, k).

This result involves the two exceptional classes M1(n, k) and L1(n, k) that we will not define
here. We refer the interested reader to [6] for the definitions.

3 Our results

Following up on the above results in terms of the spectral radius, we obtain the following two
results. We will sketch the key ingredients of the proofs of these results in the presentation.

Theorem 10. Let G be a graph of order n ≥ 6k2 + 4k + 2 with δ(G) ≥ k ≥ 1. If

ρ(G) >
k − 1

2
+

√
n2 − (3k + 1)n +

(k + 1)2 − 4

4
,

then G is hamiltonian unless cln(G) = K1 ∨ (Kn−k−1 + Kk) or cln(G) = Kk ∨ (Kn−2k + kK1).

In the above statement, cln(G) denotes the Bondy-Chvátal closure of G, obtained from G by
recursively joining pairs of non-adjacent vertices by an edge whose degree sum is at least n (in the
current graph) until no such pair remains.

It is easy to check that n − k − 1 > k−1
2 +

√
n2 − (3k + 1)n + (k+1)2−4

2 . Hence Theorem 10

extends Theorem 5, in the sense that the lower bound on ρ(G) is generally better.
We also obtained the following result for graphs on n ≥ 5 vertices with δ(G) ≥ 1.

Theorem 11. Let G be a graph of order n ≥ 5 with δ(G) ≥ 1. If

ρ(G) >
√

n2 − 4n,

then G is hamiltonian unless G ∈ G1 = {G1, G
1
1, G

2
1, G

6
3, G

9
3, G

17
3 , G18

3 , G21
3 , G22

3 , G24
3 , G26

3 }.

Here G1 is a set of exceptional graphs, which will be depicted in our presentation. Note that
our result is an improvement of Ge and Ning’s result in [3], i.e., the aforementioned statement of
Theorem 5 in the case k = 1.

For the results in terms of the signless Laplacian spectral radius, we obtain the following two
results.
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Theorem 12. Let G be a graph of order n ≥ 6k2 + 4k + 3 with δ(G) ≥ k ≥ 1. If

q(G) > 2n − 2k − 2 − 2k + 1

n − 1
,

then G is hamiltonian unless cln(G) = K1 ∨ (Kn−k−1 + Kk) or cln(G) = Kk ∨ (Kn−2k + kK1).

It is obvious that the lower bound condition on q(G) of Theorem 12 is weaker than that of
Theorem 9. Hence Theorem 12 strengthens Theorem 9 in that sense.

Theorem 13. Let G be a graph of order n ≥ 6 with δ(G) ≥ 1. If

q(G) > 2n − 4 − 3

n − 1
,

then G is hamiltonian unless G ∈ G2 = {G1, G
1
1, G

2
1, G

6
3, G

8
3, G

9
3, G

17
3 , G21

3 , G23
3 , G26

3 }.

Here G2 is a set of exceptional graphs, which will also be depicted in our presentation. Noting
that Kn−2 is a proper subgraph of G1, we obtain that q(G1) > q(Kn−2) = 2n − 4. Therefore our
result improves Theorem 8 in the case k = 1.
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